Finally, using the latter inequality along with the fact that for every k = 0, 1, ..., n the obvious inequality $||\nabla f(\mathbf{x}_k)||^2 \ge \min_{k=0,1,...,n} ||\nabla f(\mathbf{x}_k)||^2$ holds, it follows that

$$f(\mathbf{x}_0) - f^* \ge M(n+1) \min_{k=0,1,\dots,n} ||\nabla f(\mathbf{x}_k)||^2,$$

implying the desired result.

Exercises

- 4.1. Let $f \in C_L^{1,1}(\mathbb{R}^n)$ and let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by the gradient method with a constant stepsize $t_k = \frac{1}{L}$. Assume that $\mathbf{x}_k \to \mathbf{x}^*$. Show that if $\nabla f(\mathbf{x}_k) \neq 0$ for all $k \geq 0$, then \mathbf{x}^* is *not* a local maximum point.
- 4.2. [9, Exercise 1.3.3] Consider the minimization problem

$$\min\{\mathbf{x}^T\mathbf{Q}\mathbf{x}:\mathbf{x}\in\mathbb{R}^2\}$$

where Q is a positive definite 2 × 2 matrix. Suppose we use the diagonal scaling matrix

$$\mathbf{D} = \begin{pmatrix} Q_{11}^{-1} & \mathbf{0} \\ \mathbf{0} & Q_{22}^{-1} \end{pmatrix}$$

Show that the above scaling matrix improves the condition number of Q in the sense that

 $\boldsymbol{x}(\mathbf{D}^{1/2}\mathbf{Q}\mathbf{D}^{1/2}) \leq \boldsymbol{x}(\mathbf{Q}).$

4.3. Consider the quadratic minimization problem

$$\min\{\mathbf{x}^T \mathbf{A} \mathbf{x} : \mathbf{x} \in \mathbb{R}^5\},\$$

where **A** is the 5×5 Hilbert matrix defined by

$$A_{i,j} = \frac{1}{i+j-1}, \quad i,j = 1,2,3,4,5.$$

The matrix can be constructed via the MATLAB command A = hilb(5). Run the following methods and compare the number of iterations required by each of the methods when the initial vector is $\mathbf{x}_0 = (1, 2, 3, 4, 5)^T$ to obtain a solution \mathbf{x} with $||\nabla f(\mathbf{x})|| \le 10^{-4}$:

- gradient method with backtracking stepsize rule and parameters $\alpha = 0.5$, $\beta = 0.5$, s = 1;
- gradient method with backtracking stepsize rule and parameters $\alpha = 0.1$, $\beta = 0.5$, s = 1;
- gradient method with exact line search;
- diagonally scaled gradient method with diagonal elements $D_{ii} = \frac{1}{A_{ii}}, i = 1, 2, 3, 4, 5$ and exact line search;
- diagonally scaled gradient method with diagonal elements $D_{ii} = \frac{1}{A_{ii}}, i = 1, 2, 3, 4, 5$ and backtracking line search with parameters $\alpha = 0.1, \beta = 0.5, s = 1$.

- (i) Show that as long as all the points a₁, a₂,..., a_m do not reside on the same line in the plane, the method is well-defined, meaning that the linear least squares problem solved at each iteration has a unique solution.
- (ii) Write a MATLAB function that implements the damped Gauss-Newton method employed on problem (SL2) with a backtracking line search strategy with parameters $s = 1, \alpha = \beta = 0.5, \varepsilon = 10^{-4}$. Run the function on the two-dimensional problem (n = 2) with 5 anchors (m = 5) and data generated by the MATLAB commands

```
randn('seed',317);
A=randn(2,5);
x=randn(2,1);
d=sqrt(sum((A-x*ones(1,5)).^2))+0.05*randn(1,5);
d=d';
```

The columns of the 2 × 5 matrix **A** are the locations of the five sensors, **x** is the "true" location of the source, and **d** is the vector of noisy measurements between the source and the sensors. Compare your results (e.g., number of iterations) to the gradient method with backtracking and parameters $s = 1, \alpha = \beta = 0.5, \varepsilon = 10^{-4}$. Start both methods with the initial vector $(1000, -500)^T$.

- 4.7. Let $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c$, where **A** is a symmetric $n \times n$ matrix, $\mathbf{b} \in \mathbb{R}^n$, and $c \in \mathbb{R}$. Show that the *smallest* Lipschitz constant of ∇f is $2||\mathbf{A}||$.
- 4.8. Let $f : \mathbb{R}^n \to \mathbb{R}$ be given by $f(\mathbf{x}) = \sqrt{1 + ||\mathbf{x}||^2}$. Show that $f \in C_1^{1,1}$.
- 4.9. Let $f \in C_L^{1,1}(\mathbb{R}^m)$, and let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$. Show that the function $g : \mathbb{R}^n \to \mathbb{R}$ defined by $g(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b})$ satisfies $g \in C_{\hat{i}}^{1,1}(\mathbb{R}^n)$, where $\tilde{L} = ||\mathbf{A}||^2 L$.
- 4.10. Give an example of a function $f \in C_L^{1,1}(\mathbb{R})$ and a starting point $x_0 \in \mathbb{R}$ such that the problem min f(x) has an optimal solution and the gradient method with constant stepsize $t = \frac{2}{L}$ diverges.
- 4.11. Suppose that f ∈ C_L^{1,1}(ℝⁿ) and assume that ∇²f(x) ≥ 0 for any x ∈ ℝⁿ. Suppose that the optimal value of the problem min_{x∈ℝⁿ} f(x) is f*. Let {x_k}_{k≥0} be the sequence generated by the gradient method with constant stepsize 1/L. Show that if {x_k}_{k≥0} is bounded, then f(x_k) → f* as k → ∞.

5.2. Consider the Freudenstein and Roth test function

$$f(\mathbf{x}) = f_1(\mathbf{x})^2 + f_2(\mathbf{x})^2, \qquad \mathbf{x} \in \mathbb{R}^2,$$

where

$$f_1(\mathbf{x}) = -13 + x_1 + ((5 - x_2)x_2 - 2)x_2,$$

$$f_2(\mathbf{x}) = -29 + x_1 + ((x_2 + 1)x_2 - 14)x_2$$

- (i) Show that the function f has three stationary points. Find them and prove that one is a global minimizer, one is a strict local minimum and the third is a saddle point.
- (ii) Use MATLAB to employ the following three methods on the problem of minimizing *f*:
 - 1. the gradient method with backtracking and parameters $(s, \alpha, \beta) = (1, 0.5, 0.5)$.
 - 2. the hybrid Gradient-Newton Method with parameters (s, α, β) = (0.5, 0.5).
 - 3. damped Gauss–Newton's method with a backtracking line search strategy with parameters (s, α, β) = (1,0.5,0.5).

All the algorithms should use the stopping criteria $||\nabla f(\mathbf{x})|| \le 10^{-5}$. Each algorithm should be employed four times on the following four starting points: $(-50,7)^T$, $(20,7)^T$, $(20,-18)^T$, $(5,-10)^T$. For each of the four starting points, compare the number of iterations and the point to which each method converged. If a method did not converge, explain why.

- 5.3. Let f be a twice continuously differentiable function satisfying $L\mathbf{I} \succeq \nabla^2 f(\mathbf{x}) \succeq m\mathbf{I}$ for some L > m > 0 and let \mathbf{x}^* be the unique minimizer of f over \mathbb{R}^n .
 - (i) Show that

$$f(\mathbf{x}) - f(\mathbf{x}^*) \ge \frac{m}{2} ||\mathbf{x} - \mathbf{x}^*||^2$$

for any $\mathbf{x} \in \mathbb{R}^n$.

(ii) Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by damped Newton's method with constant stepsize $t_k = \frac{m}{L}$. Show that

$$f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}) \ge \frac{m}{2L} \nabla f(\mathbf{x}_k)^T (\nabla^2 f(\mathbf{x}_k))^{-1} \nabla f(\mathbf{x}_k).$$

(iii) Show that $\mathbf{x}_k \to \mathbf{x}^*$ as $k \to \infty$.

Proof. For p = 1, the inequality follows by summing up the inequalities $|x_i + y_i| \le |x_i| + |y_i|$. Suppose then that p > 1. We can assume that $\mathbf{x} \ne 0, \mathbf{y} \ne 0$, and $\mathbf{x} + \mathbf{y} \ne 0$. Otherwise, the inequality is trivial. The function $\varphi(t) = t^p$ is convex over \mathbb{R}_+ since $\varphi''(t) = p(p-1)t^{p-2} > 0$ for t > 0. Therefore, by the definition of convexity we have that for any $\lambda_1, \lambda_2 \ge 0$ with $\lambda_1 + \lambda_2 = 1$ one has

$$(\lambda_1 t + \lambda_2 s)^p \le \lambda_1 t^p + \lambda_2 s^p.$$

Let $i \in \{1, 2, ..., n\}$. Plugging $\lambda_1 = \frac{\|\mathbf{x}\|_p}{\|\mathbf{x}\|_p + \|\mathbf{y}\|_p}$, $\lambda_2 = \frac{\|\mathbf{y}\|_p}{\|\mathbf{x}\|_p + \|\mathbf{y}\|_p}$, $t = \frac{|x_i|}{\|\mathbf{x}\|_p}$, and $s = \frac{|y_i|}{\|\mathbf{y}\|_p}$ in the above inequality yields

$$\frac{1}{(||\mathbf{x}||_{p} + ||\mathbf{y}||_{p})^{p}}(|x_{i}| + |y_{i}|)^{p} \leq \frac{||\mathbf{x}||_{p}}{||\mathbf{x}||_{p} + ||\mathbf{y}||_{p}}\frac{|x_{i}|^{p}}{||\mathbf{x}||_{p}^{p}} + \frac{||\mathbf{y}||_{p}}{||\mathbf{x}||_{p} + ||\mathbf{y}||_{p}}\frac{|y_{i}|^{p}}{||\mathbf{y}||_{p}}$$

Summing the above inequality over i = 1, 2, ..., n, we obtain that

$$\frac{1}{(||\mathbf{x}||_{p} + ||\mathbf{y}||_{p})^{p}} \sum_{i=1}^{n} (|x_{i}| + |y_{i}|)^{p} \le \frac{||\mathbf{x}||_{p}}{||\mathbf{x}||_{p} + ||\mathbf{y}||_{p}} + \frac{||\mathbf{y}||_{p}}{||\mathbf{x}||_{p} + ||\mathbf{y}||_{p}} = 1,$$

and hence

$$\sum_{i=1}^{n} (|x_i| + |y_i|)^p \le (||\mathbf{x}||_p + ||\mathbf{y}||_p)^p.$$

Finally,

$$||\mathbf{x} + \mathbf{y}||_{p} = \sqrt[n]{\sum_{i=1}^{n} |x_{i} + y_{i}|^{p}} \le \sqrt[n]{\sum_{i=1}^{n} (|x_{i}| + |y_{i}|)^{p}} \le ||\mathbf{x}||_{p} + ||\mathbf{y}||_{p}.$$

Exercises

- 7.1. For each of the following sets determine whether they are convex or not (explaining your choice).
 - (i) $C_1 = \{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||^2 = 1\}.$
 - (ii) $C_2 = \{ \mathbf{x} \in \mathbb{R}^n : \max_{i=1,2,\dots,n} x_i \le 1 \}.$
 - (iii) $C_3 = \{ \mathbf{x} \in \mathbb{R}^n : \min_{i=1,2,\dots,n} x_i \le 1 \}.$

(iv)
$$C_4 = \{ \mathbf{x} \in \mathbb{R}^n_{++} : \prod_{i=1}^n x_i \ge 1 \}.$$

7.2. Show that the set

$$M = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{Q} \mathbf{x} \le (\mathbf{a}^T \mathbf{x})^2, \mathbf{a}^T \mathbf{x} \ge \mathbf{0} \},\$$

where **Q** is an $n \times n$ positive definite matrix and $\mathbf{a} \in \mathbb{R}^n$ is a convex cone.

- 7.3. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex as well as concave function. Show that f is an affine function; that is, there exist $\mathbf{a} \in \mathbb{R}^n$ and $b \in \mathbb{R}$ such that $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + b$ for any $\mathbf{x} \in \mathbb{R}^n$.
- 7.4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable convex function. Show that for any $\varepsilon > 0$, the function

$$g_{\varepsilon}(\mathbf{x}) = f(\mathbf{x}) + \varepsilon ||\mathbf{x}||^2$$

is coercive.

- 7.5. Let $f : \mathbb{R}^n \to \mathbb{R}$. Prove that f is convex if and only if for any $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{d} \neq \mathbf{0}$, the one-dimensional function $g_{\mathbf{x},\mathbf{d}}(t) = f(\mathbf{x} + t\mathbf{d})$ is convex.
- 7.6. Prove Theorem 7.13.
- 7.7. Let $C \subseteq \mathbb{R}^n$ be a convex set. Let f be a convex function over C, and let g be a strictly convex function over C. Show that the sum function f + g is strictly convex over C.
- 7.8. (i) Let f be a convex function defined on a convex set C. Suppose that f is not strictly convex on C. Prove that there exist x, y ∈ ℝⁿ(x ≠ y) such that f is affine over the segment [x, y].
 - (ii) Prove that the function f(x) = x⁴ is strictly convex on ℝ and that g(x) = x^p for p > 1 is strictly convex over ℝ_⊥.
- 7.9. Show that the log-sum-exp function $f(\mathbf{x}) = \ln(\sum_{i=1}^{n} e^{x_i})$ is not strictly convex over \mathbb{R}^n .
- 7.10. Show that the following functions are convex over the specified domain C:

(i)
$$f(x_1, x_2, x_3) = -\sqrt{x_1 x_2} + 2x_1^2 + 2x_2^2 + 3x_3^2 - 2x_1 x_2 - 2x_2 x_3$$
 over \mathbb{R}^3_{++} .

(ii)
$$f(\mathbf{x}) = ||\mathbf{x}||^4$$
 over \mathbb{R}^n .

(iii)
$$f(\mathbf{x}) = \sum_{i=1}^{n} x_i \ln(x_i) - \left(\sum_{i=1}^{n} x_i\right) \ln\left(\sum_{i=1}^{n} x_i\right)$$
 over \mathbb{R}^n_{++} .

- (iv) $f(\mathbf{x}) = \sqrt{\mathbf{x}^T \mathbf{Q} \mathbf{x} + 1}$ over \mathbb{R}^n , where $\mathbf{Q} \succeq \mathbf{0}$ is an $n \times n$ matrix.
- (v) $f(x_1, x_2, x_3) = \max\{\sqrt{x_1^2 + x_2^2 + 20x_3^2 x_1x_2 4x_2x_3 + 1}, (x_1^2 + x_2^2 + x_1 + x_2 + 2)^2\}$ over \mathbb{R}^3 .

(vi)
$$f(x_1, x_2) = (2x_1^2 + 3x_2^2) \left(\frac{1}{2}x_1^2 + \frac{1}{3}x_2^2\right)$$
.

7.11. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, and let $f : \mathbb{R}^n \to \mathbb{R}$ be defined by

$$f(\mathbf{x}) = \ln\left(\sum_{i=1}^{m} e^{\mathbf{A}_i \mathbf{x}}\right),\,$$

where \mathbf{A}_i is the *i*th row of \mathbf{A} . Prove that f is convex over \mathbb{R}^n . 7.12. Prove that the following set is a convex subset of \mathbb{R}^{n+2} :

$$C = \left\{ \begin{pmatrix} \mathbf{x} \\ y \\ z \end{pmatrix} : ||\mathbf{x}||^2 \le yz, \mathbf{x} \in \mathbb{R}^n, y, z \in \mathbb{R}_+ \right\}.$$

- 7.13. Show that the function $f(x_1, x_2, x_3) = -e^{(-x_1+x_2-2x_3)^2}$ is not convex over \mathbb{R}^n .
- 7.14. Prove that the geometric mean function $f(\mathbf{x}) = \sqrt[n]{\prod_{i=1}^{n} x_i}$ is concave over \mathbb{R}^n_{++} . Is it strictly concave over \mathbb{R}^n_{++} ?

(iv) Prove that for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \frac{1}{L} ||\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})||^2$$
 for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

- 7.29. Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be an extended real-valued function. Show that f is convex if and only if epi(f) is convex.
- 7.30. Show that the support function of the set $S = {\mathbf{x} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{Q} \mathbf{x} \le 1}$, where $\mathbf{Q} \succ \mathbf{0}$, is $\sigma_s(\mathbf{y}) = \sqrt{\mathbf{y}^T \mathbf{Q}^{-1} \mathbf{y}}$.
- 7.31. Let $S = {\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \le b}$, where $0 \ne \mathbf{a} \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Find the support function σ_S .
- 7.32. Let p > 1. Show that the support function of $S = \{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||_p \le 1\}$ is $\sigma_S(\mathbf{y}) = ||\mathbf{y}||_q$, where q is defined by the relation $\frac{1}{p} + \frac{1}{q} = 1$.
- 7.33. Let f_0, f_1, \ldots, f_m be convex functions over \mathbb{R}^n and consider the perturbation function

$$F(\mathbf{b}) = \min_{\mathbf{x}} \{ f_0(\mathbf{x}) : f_i(\mathbf{x}) \le b_i, i = 1, 2, \dots, m \}.$$

Assume that for any $\mathbf{b} \in \mathbb{R}^m$ the minimization problem in the above definition of $F(\mathbf{b})$ has an optimal solution. Show that F is convex over \mathbb{R}^m .

7.34. Let $C \subseteq \mathbb{R}^n$ be a convex set and let ϕ_1, \dots, ϕ_m be convex functions over C. Let U be the following subset of \mathbb{R}^m :

$$U = \{ \mathbf{y} \in \mathbb{R}^m : \phi_1(\mathbf{x}) \le y_1, \dots, \phi_m(\mathbf{x}) \le y_m \text{ for some } \mathbf{x} \in C \}.$$

Show that U is a convex set.

- 7.35. (i) Show that the extreme points of the unit simplex Δ_n are the unit-vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$.
 - (ii) Find the optimal solution of the problem

 $\begin{array}{ll} \max & 57x_1^2 + 65x_2^2 + 17x_3^2 + 96x_1x_2 - 32x_1x_3 + 8x_2x_3 + 27x_1 - 84x_2 + 20x_3 \\ \text{s.t.} & x_1 + x_2 + x_3 = 1 \\ & x_1, x_2, x_3 \geq 0. \end{array}$

7.36. Prove that for any $x_1, x_2, \ldots, x_n \in \mathbb{R}_+$ the following inequality holds:

$$\frac{\sum_{i=1}^n x_i}{n} \le \sqrt{\frac{\sum_{i=1}^n x_i^2}{n}}.$$

7.37. Prove that for any $x_1, x_2, \ldots, x_n \in \mathbb{R}_{++}$ the following inequality holds:

$$\frac{\sum_{i=1}^{n} x_i^2}{\sum_{i=1}^{n} x_i} \le \sqrt{\frac{\sum_{i=1}^{n} x_i^3}{\sum_{i=1}^{n} x_i}}.$$

7.38. Let $x_1, x_2, ..., x_n > 0$ satisfy $\sum_{i=1}^n x_i = 1$. Prove that

$$\sum_{i=1}^n \frac{x_i}{\sqrt{1-x_i}} \ge \sqrt{\frac{n}{n-1}}.$$

We can now use CVX to solve the equivalent problem (8.13):

```
cvx_begin
variable z(3)
minimize(d'*z-2*abs(f)'*sqrt(z))
subject to
sum(z)<=1
z>=0
cvx_end
```

The optimal solution is then computed by $y_i = -\text{sgn}(f_i)\sqrt{z_i}$ and then $\mathbf{x} = \mathbf{U}\mathbf{y}$:

```
>> y=-sign(f).*sqrt(z);
>> x=U*y
x =
        -0.2300
        -0.7259
        0.6482
```

Exercises

8.1. Consider the problem

(P) min $f(\mathbf{x})$ (P) s.t. $g(\mathbf{x}) \leq 0$ $\mathbf{x} \in X$,

where f and g are convex functions over \mathbb{R}^n and $X \subseteq \mathbb{R}^n$ is a convex set. Suppose that \mathbf{x}^* is an optimal solution of (P) that satisfies $g(\mathbf{x}^*) < 0$. Show that \mathbf{x}^* is also an optimal solution of the problem

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{x} \in X \end{array}$$

- 8.2. Let $C = B[\mathbf{x}_0, r]$, where $\mathbf{x}_0 \in \mathbb{R}^n$ and r > 0 are given. Find a formula for the orthogonal projection operator P_C .
- 8.3. Let f be a strictly convex function over \mathbb{R}^m and let g be a convex function over \mathbb{R}^n . Define the function

$$b(\mathbf{x}) = f(\mathbf{A}\mathbf{x}) + g(\mathbf{x}),$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$. Assume that \mathbf{x}^* and \mathbf{y}^* are optimal solutions of the unconstrained problem of minimizing *h*. Show that $\mathbf{A}\mathbf{x}^* = \mathbf{A}\mathbf{y}^*$.

- 8.4. For each of the following optimization problems (a) show that it is convex, (b) write a CVX code that solves it, and (c) write down the optimal solution (by running CVX).
 - (i)

$$\begin{array}{ll} \min & x_1^2 + 2x_1x_2 + 2x_2^2 + x_3^2 + 3x_1 - 4x_2 \\ \text{s.t.} & \sqrt{2x_1^2 + x_1x_2 + 4x_2^2 + 4} + \frac{(x_1 - x_2 + x_3 + 1)^2}{x_1 + x_2} \leq 6 \\ & x_1, x_2, x_3 \geq 1. \end{array}$$