Finally, using the latter inequality along with the fact that for every $k=0,1, \ldots, n$ the obvious inequality $\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2} \geq \min _{k=0,1, \ldots, n}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2}$ holds, it follows that

$$
f\left(\mathbf{x}_{0}\right)-f^{*} \geq M(n+1) \min _{k=0,1, \ldots, n}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2},
$$

implying the desired result. $\quad \square$

Exercises

4.1. Let $f \in C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$ and let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by the gradient method with a constant stepsize $t_{k}=\frac{1}{L}$. Assume that $\mathbf{x}_{k} \rightarrow \mathbf{x}^{*}$. Show that if $\nabla f\left(\mathbf{x}_{k}\right) \neq 0$ for all $k \geq 0$, then \mathbf{x}^{*} is not a local maximum point.
4.2. [9, Exercise 1.3.3] Consider the minimization problem

$$
\min \left\{\mathbf{x}^{T} \mathbf{Q x}: \mathbf{x} \in \mathbb{R}^{2}\right\}
$$

where \mathbf{Q} is a positive definite 2×2 matrix. Suppose we use the diagonal scaling matrix

$$
\mathbf{D}=\left(\begin{array}{cc}
Q_{11}^{-1} & 0 \\
0 & Q_{22}^{-1}
\end{array}\right)
$$

Show that the above scaling matrix improves the condition number of \mathbf{Q} in the sense that

$$
\varkappa\left(\mathbf{D}^{1 / 2} \mathbf{Q D}^{1 / 2}\right) \leq \varkappa(\mathbf{Q})
$$

4.3. Consider the quadratic minimization problem

$$
\min \left\{\mathbf{x}^{T} \mathbf{A} \mathbf{x}: \mathbf{x} \in \mathbb{R}^{5}\right\}
$$

where A is the 5×5 Hilbert matrix defined by

$$
A_{i, j}=\frac{1}{i+j-1}, \quad i, j=1,2,3,4,5
$$

The matrix can be constructed via the MATLAB command $A=$ hilb (5). Run the following methods and compare the number of iterations required by each of the methods when the initial vector is $\mathbf{x}_{0}=(1,2,3,4,5)^{T}$ to obtain a solution \mathbf{x} with $\|\nabla f(\mathbf{x})\| \leq 10^{-4}$:

- gradient method with backtracking stepsize rule and parameters $\alpha=0.5, \beta=$ $0.5, s=1 ;$
- gradient method with backtracking stepsize rule and parameters $\alpha=0.1, \beta=$ $0.5, s=1 ;$
- gradient method with exact line search;
- diagonally scaled gradient method with diagonal elements $D_{i i}=\frac{1}{A_{i i}}, i=$ 1,2,3,4,5 and exact line search;
- diagonally scaled gradient method with diagonal elements $D_{i i}=\frac{1}{A_{i i}}, i=$ $1,2,3,4,5$ and backtracking line search with parameters $\alpha=0.1, \beta=0.5$, $s=1$.
(i) Show that as long as all the points $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$ do not reside on the same line in the plane, the method is well-defined, meaning that the linear least squares problem solved at each iteration has a unique solution.
(ii) Write a MATLAB function that implements the damped Gauss-Newton method employed on problem (SL2) with a backtracking line search strategy with parameters $s=1, \alpha=\beta=0.5, \varepsilon=10^{-4}$. Run the function on the two-dimensional problem ($n=2$) with 5 anchors $(m=5)$ and data generated by the MATLAB commands

```
randn('seed',317);
A=randn (2,5) ;
x=randn (2,1);
d=sqrt (sum((A-x*ones (1,5)).^2)) +0.05*randn (1,5);
d=d';
```

The columns of the 2×5 matrix \mathbf{A} are the locations of the five sensors, \mathbf{x} is the "true" location of the source, and \mathbf{d} is the vector of noisy measurements between the source and the sensors. Compare your results (e.g., number of iterations) to the gradient method with backtracking and parameters $s=1, \alpha=\beta=0.5, \varepsilon=10^{-4}$. Start both methods with the initial vector $(1000,-500)^{T}$.
4.7. Let $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A x}+2 \mathbf{b}^{T} \mathbf{x}+c$, where \mathbf{A} is a symmetric $n \times n$ matrix, $\mathbf{b} \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$. Show that the smallest Lipschitz constant of ∇f is $2\|\mathbf{A}\|$.
4.8. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $f(\mathbf{x})=\sqrt{1+\|\mathbf{x}\|^{2}}$. Show that $f \in C_{1}^{1,1}$.
4.9. Let $f \in C_{L}^{1,1}\left(\mathbb{R}^{m}\right)$, and let $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$. Show that the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $g(\mathbf{x})=f(\mathbf{A x}+\mathbf{b})$ satisfies $g \in C_{\tilde{L}}^{1,1}\left(\mathbb{R}^{n}\right)$, where $\tilde{L}=\|\mathbf{A}\|^{2} L$.
4.10. Give an example of a function $f \in C_{L}^{1,1}(\mathbb{R})$ and a starting point $x_{0} \in \mathbb{R}$ such that the problem $\min f(x)$ has an optimal solution and the gradient method with constant stepsize $t=\frac{2}{L}$ diverges.
4.11. Suppose that $f \in C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$ and assume that $\nabla^{2} f(\mathbf{x}) \succeq 0$ for any $\mathbf{x} \in \mathbb{R}^{n}$. Suppose that the optimal value of the problem $\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})$ is f^{*}. Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by the gradient method with constant stepsize $\frac{1}{L}$. Show that if $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ is bounded, then $f\left(\mathbf{x}_{k}\right) \rightarrow f^{*}$ as $k \rightarrow \infty$.
5.2. Consider the Freudenstein and Roth test function

$$
f(\mathbf{x})=f_{1}(\mathbf{x})^{2}+f_{2}(\mathbf{x})^{2}, \quad \mathbf{x} \in \mathbb{R}^{2}
$$

where

$$
\begin{aligned}
& f_{1}(\mathbf{x})=-13+x_{1}+\left(\left(5-x_{2}\right) x_{2}-2\right) x_{2} \\
& f_{2}(\mathbf{x})=-29+x_{1}+\left(\left(x_{2}+1\right) x_{2}-14\right) x_{2}
\end{aligned}
$$

(i) Show that the function f has three stationary points. Find them and prove that one is a global minimizer, one is a strict local minimum and the third is a saddle point.
(ii) Use MATLAB to employ the following three methods on the problem of minimizing f :

1. the gradient method with backtracking and parameters $(s, \alpha, \beta)=$ $(1,0.5,0.5)$.
2. the hybrid Gradient-Newton Method with parameters $(s, \alpha, \beta)=(0.5,0.5)$.
3. damped Gauss-Newton's method with a backtracking line search strategy with parameters $(s, \alpha, \beta)=(1,0.5,0.5)$.
All the algorithms should use the stopping criteria $\|\nabla f(\mathbf{x})\| \leq 10^{-5}$. Each algorithm should be employed four times on the following four starting points: $(-50,7)^{T},(20,7)^{T},(20,-18)^{T},(5,-10)^{T}$. For each of the four starting points, compare the number of iterations and the point to which each method converged. If a method did not converge, explain why.
5.3. Let f be a twice continuously differentiable function satisfying $L \mathbf{I} \succeq \nabla^{2} f(\mathbf{x}) \succeq m \mathbf{I}$ for some $L>m>0$ and let \mathbf{x}^{*} be the unique minimizer of f over \mathbb{R}^{n}.
(i) Show that

$$
f(\mathbf{x})-f\left(\mathbf{x}^{*}\right) \geq \frac{m}{2}\left\|\mathbf{x}-\mathbf{x}^{*}\right\|^{2}
$$

for any $\mathbf{x} \in \mathbb{R}^{n}$.
(ii) Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by damped Newton's method with constant stepsize $t_{k}=\frac{m}{L}$. Show that

$$
f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k+1}\right) \geq \frac{m}{2 L} \nabla f\left(\mathbf{x}_{k}\right)^{T}\left(\nabla^{2} f\left(\mathbf{x}_{k}\right)\right)^{-1} \nabla f\left(\mathbf{x}_{k}\right) .
$$

(iii) Show that $\mathbf{x}_{k} \rightarrow \mathbf{x}^{*}$ as $k \rightarrow \infty$.

Proof. For $p=1$, the inequality follows by summing up the inequalities $\left|x_{i}+y_{i}\right| \leq$ $\left|x_{i}\right|+\left|y_{i}\right|$. Suppose then that $p>1$. We can assume that $\mathbf{x} \neq 0, \mathbf{y} \neq 0$, and $\mathbf{x}+\mathbf{y} \neq 0$. Otherwise, the inequality is trivial. The function $\varphi(t)=t^{p}$ is convex over \mathbb{R}_{+}since $\varphi^{\prime \prime}(t)=p(p-1) t^{p-2}>0$ for $t>0$. Therefore, by the definition of convexity we have that for any $\lambda_{1}, \lambda_{2} \geq 0$ with $\lambda_{1}+\lambda_{2}=1$ one has

$$
\left(\lambda_{1} t+\lambda_{2} s\right)^{p} \leq \lambda_{1} t^{p}+\lambda_{2} s^{p} .
$$

Let $i \in\{1,2, \ldots, n\}$. Plugging $\lambda_{1}=\frac{\|\mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}+\|\mathrm{y}\|_{p}}, \lambda_{2}=\frac{\|\mathrm{y}\|_{p}}{\|\mathrm{x}\|\left\|_{p}+\right\| \mathrm{y} \|_{p}}, t=\frac{\left|x_{i}\right|}{\|\mathbf{x}\|_{p}}$, and $s=\frac{\left|y_{i}\right|}{\|\mathrm{y}\|_{p}}$ in the above inequality yields

$$
\frac{1}{\left(\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}\right)^{p}}\left(\left|x_{i}\right|+\left|y_{i}\right|\right)^{p} \leq \frac{\|\mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}} \frac{\left|x_{i}\right|^{p}}{\|\mathbf{x}\|_{p}^{p}}+\frac{\|\mathbf{y}\|_{p}}{\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}} \frac{\left|y_{i}\right|^{p}}{\|\mathbf{y}\|_{p}^{p}} .
$$

Summing the above inequality over $i=1,2, \ldots, n$, we obtain that

$$
\frac{1}{\left(\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}\right)^{p}} \sum_{i=1}^{n}\left(\left|x_{i}\right|+\left|y_{i}\right|\right)^{p} \leq \frac{\|\mathbf{x}\|_{p}}{\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}}+\frac{\|\mathbf{y}\|_{p}}{\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}}=1
$$

and hence

$$
\sum_{i=1}^{n}\left(\left|x_{i}\right|+\left|y_{i}\right|\right)^{p} \leq\left(\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p}\right)^{p} .
$$

Finally,

$$
\|\mathbf{x}+\mathbf{y}\|_{p}=\sqrt{\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}} \leq \sqrt[p]{\sum_{i=1}^{n}\left(\left|x_{i}\right|+\left|y_{i}\right|\right)^{p}} \leq\|\mathbf{x}\|_{p}+\|\mathbf{y}\|_{p} .
$$

Exercises

7.1. For each of the following sets determine whether they are convex or not (explaining your choice).
(i) $C_{1}=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|^{2}=1\right\}$.
(ii) $C_{2}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \max _{i=1,2, \ldots, n} x_{i} \leq 1\right\}$.
(iii) $C_{3}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \min _{i=1,2, \ldots, n} x_{i} \leq 1\right\}$.
(iv) $C_{4}=\left\{\mathbf{x} \in \mathbb{R}_{++}^{n}: \prod_{i=1}^{n} x_{i} \geq 1\right\}$.
7.2. Show that the set

$$
M=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}^{T} \mathbf{Q} \mathbf{x} \leq\left(\mathbf{a}^{T} \mathbf{x}\right)^{2}, \mathbf{a}^{T} \mathbf{x} \geq 0\right\}
$$

where \mathbf{Q} is an $n \times n$ positive definite matrix and $\mathbf{a} \in \mathbb{R}^{n}$ is a convex cone.
7.3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex as well as concave function. Show that f is an affine function; that is, there exist $\mathbf{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ such that $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}+b$ for any $\mathbf{x} \in \mathbb{R}^{n}$.
7.4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuously differentiable convex function. Show that for any $\varepsilon>0$, the function

$$
g_{\varepsilon}(\mathbf{x})=f(\mathbf{x})+\varepsilon\|\mathbf{x}\|^{2}
$$

is coercive.
7.5. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Prove that f is convex if and only if for any $\mathbf{x} \in \mathbb{R}^{n}$ and $\mathbf{d} \neq 0$, the one-dimensional function $g_{\mathbf{x}, \mathbf{d}}(t)=f(\mathbf{x}+t \mathbf{d})$ is convex.
7.6. Prove Theorem 7.13.
7.7. Let $C \subseteq \mathbb{R}^{n}$ be a convex set. Let f be a convex function over C, and let g be a strictly convex function over C. Show that the sum function $f+g$ is strictly convex over C.
7.8. (i) Let f be a convex function defined on a convex set C. Suppose that f is not strictly convex on C. Prove that there exist $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}(\mathbf{x} \neq \mathbf{y})$ such that f is affine over the segment $[\mathrm{x}, \mathrm{y}]$.
(ii) Prove that the function $f(x)=x^{4}$ is strictly convex on \mathbb{R} and that $g(x)=x^{p}$ for $p>1$ is strictly convex over \mathbb{R}_{+}.
7.9. Show that the log-sum-exp function $f(\mathbf{x})=\ln \left(\sum_{i=1}^{n} e^{x_{i}}\right)$ is not strictly convex over \mathbb{R}^{n}.
7.10. Show that the following functions are convex over the specified domain C :
(i) $f\left(x_{1}, x_{2}, x_{3}\right)=-\sqrt{x_{1} x_{2}}+2 x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}$ over \mathbb{R}_{++}^{3}.
(ii) $f(\mathbf{x})=\|\mathbf{x}\|^{4}$ over \mathbb{R}^{n}.
(iii) $f(\mathbf{x})=\sum_{i=1}^{n} x_{i} \ln \left(x_{i}\right)-\left(\sum_{i=1}^{n} x_{i}\right) \ln \left(\sum_{i=1}^{n} x_{i}\right)$ over \mathbb{R}_{++}^{n}.
(iv) $f(\mathbf{x})=\sqrt{\mathbf{x}^{T} \mathbf{Q x}+1}$ over \mathbb{R}^{n}, where $\mathbf{Q} \succeq 0$ is an $n \times n$ matrix.
(v) $f\left(x_{1}, x_{2}, x_{3}\right)=\max \left\{\sqrt{x_{1}^{2}+x_{2}^{2}+20 x_{3}^{2}-x_{1} x_{2}-4 x_{2} x_{3}+1},\left(x_{1}^{2}+x_{2}^{2}+x_{1}+x_{2}+\right.\right.$ $\left.2)^{2}\right\}$ over \mathbb{R}^{3}.
(vi) $f\left(x_{1}, x_{2}\right)=\left(2 x_{1}^{2}+3 x_{2}^{2}\right)\left(\frac{1}{2} x_{1}^{2}+\frac{1}{3} x_{2}^{2}\right)$.
7.11. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
f(\mathbf{x})=\ln \left(\sum_{i=1}^{m} e^{\mathbf{A}_{i} \mathbf{x}}\right),
$$

where \mathbf{A}_{i} is the i th row of \mathbf{A}. Prove that f is convex over \mathbb{R}^{n}.
7.12. Prove that the following set is a convex subset of \mathbb{R}^{n+2} :

$$
C=\left\{\left(\begin{array}{l}
\mathbf{x} \\
y \\
z
\end{array}\right):\|\mathbf{x}\|^{2} \leq y z, \mathbf{x} \in \mathbb{R}^{n}, y, z \in \mathbb{R}_{+}\right\} .
$$

7.13. Show that the function $f\left(x_{1}, x_{2}, x_{3}\right)=-e^{\left(-x_{1}+x_{2}-2 x_{3}\right)^{2}}$ is not convex over \mathbb{R}^{n}.
7.14. Prove that the geometric mean function $f(\mathbf{x})=\sqrt[n]{\prod_{i=1}^{n} x_{i}}$ is concave over \mathbb{R}_{++}^{n}. Is it strictly concave over \mathbb{R}_{++}^{n} ?
(iv) Prove that for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$

$$
\langle\nabla f(\mathbf{x})-\nabla f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle \geq \frac{1}{L}\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|^{2} \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

7.29. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be an extended real-valued function. Show that f is convex if and only if epi (f) is convex.
7.30. Show that the support function of the set $S=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}^{T} \mathbf{Q} \mathbf{x} \leq 1\right\}$, where $\mathbf{Q} \succ 0$, is $\sigma_{S}(\mathbf{y})=\sqrt{\mathbf{y}^{T} \mathbf{Q}^{-1} \mathbf{y}}$.
7.31. Let $S=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{a}^{T} \mathbf{x} \leq b\right\}$, where $0 \neq \mathbf{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. Find the support function σ_{S}.
7.32. Let $p>1$. Show that the support function of $S=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|_{p} \leq 1\right\}$ is $\sigma_{S}(\mathbf{y})=$ $\|\mathbf{y}\|_{q}$, where q is defined by the relation $\frac{1}{p}+\frac{1}{q}=1$.
7.33. Let $f_{0}, f_{1}, \ldots, f_{m}$ be convex functions over \mathbb{R}^{n} and consider the perturbation function

$$
F(\mathbf{b})=\min _{\mathbf{x}}\left\{f_{0}(\mathbf{x}): f_{i}(\mathbf{x}) \leq b_{i}, i=1,2, \ldots, m\right\} .
$$

Assume that for any $\mathbf{b} \in \mathbb{R}^{m}$ the minimization problem in the above definition of $F(\mathbf{b})$ has an optimal solution. Show that F is convex over \mathbb{R}^{m}.
7.34. Let $C \subseteq \mathbb{R}^{n}$ be a convex set and let $\phi_{1}, \ldots, \phi_{m}$ be convex functions over C. Let U be the following subset of \mathbb{R}^{m} :

$$
U=\left\{\mathbf{y} \in \mathbb{R}^{m}: \phi_{1}(\mathbf{x}) \leq y_{1}, \ldots, \phi_{m}(\mathbf{x}) \leq y_{m} \text { for some } \mathbf{x} \in C\right\} .
$$

Show that U is a convex set.
7.35. (i) Show that the extreme points of the unit simplex Δ_{n} are the unit-vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$.
(ii) Find the optimal solution of the problem

$$
\begin{array}{ll}
\max & 57 x_{1}^{2}+65 x_{2}^{2}+17 x_{3}^{2}+96 x_{1} x_{2}-32 x_{1} x_{3}+8 x_{2} x_{3}+27 x_{1}-84 x_{2}+20 x_{3} \\
\text { s.t. } & x_{1}+x_{2}+x_{3}=1 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

7.36. Prove that for any $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}_{+}$the following inequality holds:

$$
\frac{\sum_{i=1}^{n} x_{i}}{n} \leq \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}} .
$$

7.37. Prove that for any $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}_{++}$the following inequality holds:

$$
\frac{\sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} x_{i}} \leq \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{3}}{\sum_{i=1}^{n} x_{i}}} .
$$

7.38. Let $x_{1}, x_{2}, \ldots, x_{n}>0$ satisfy $\sum_{i=1}^{n} x_{i}=1$. Prove that

$$
\sum_{i=1}^{n} \frac{x_{i}}{\sqrt{1-x_{i}}} \geq \sqrt{\frac{n}{n-1}} .
$$

We can now use CVX to solve the equivalent problem (8.13):

```
cvx_begin
variable z(3)
minimize(d'*z-2*abs(f)'*sqrt(z))
subject to
sum(z)<=1
z>=0
cvx_end
```

The optimal solution is then computed by $y_{i}=-\operatorname{sgn}\left(f_{i}\right) \sqrt{z_{i}}$ and then $\mathbf{x}=\mathbf{U y}$:

```
>> y=-sign(f).*sqrt(z);
>> x=U*y
x =
```

 \(-0.2300\)
 \(-0.7259\)
 0.6482

Exercises

8.1. Consider the problem

$$
\begin{array}{ll}
\text { (P) } \quad \text { s.t. } & g(\mathbf{x}) \leq 0 \\
& \mathbf{x} \in X,
\end{array}
$$

where f and g are convex functions over \mathbb{R}^{n} and $X \subseteq \mathbb{R}^{n}$ is a convex set. Suppose that \mathbf{x}^{*} is an optimal solution of (P) that satisfies $g\left(\mathbf{x}^{*}\right)<0$. Show that \mathbf{x}^{*} is also an optimal solution of the problem

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in X .
\end{array}
$$

8.2. Let $C=B\left[\mathbf{x}_{0}, r\right]$, where $\mathbf{x}_{0} \in \mathbb{R}^{n}$ and $r>0$ are given. Find a formula for the orthogonal projection operator P_{C}.
8.3. Let f be a strictly convex function over \mathbb{R}^{m} and let g be a convex function over \mathbb{R}^{n}. Define the function

$$
h(\mathbf{x})=f(\mathbf{A} \mathbf{x})+g(\mathbf{x}),
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$. Assume that \mathbf{x}^{*} and \mathbf{y}^{*} are optimal solutions of the unconstrained problem of minimizing h. Show that $\mathbf{A x}^{*}=\mathbf{A y}^{*}$.
8.4. For each of the following optimization problems (a) show that it is convex, (b) write a CVX code that solves it, and (c) write down the optimal solution (by running CVX).
(i)

$$
\begin{array}{ll}
\min & x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}+x_{3}^{2}+3 x_{1}-4 x_{2} \\
\text { s.t. } & \sqrt{2 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2}+4}+\frac{\left(x_{1}-x_{2}+x_{3}+1\right)^{2}}{x_{1}+x_{2}} \leq 6 \\
& x_{1}, x_{2}, x_{3} \geq 1
\end{array}
$$

