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Finally, using the latter inequality along with the fact that for every & = 0,1,...,7 the
obvious inequality ||V f(x)|[* > ming_q, _, [[V/(x;)|]* holds, it follows that

fx)—f*>M(n+1) mm |Vf Xk)”

implying the desired result. O

Exercises

4.1.

4.2.

4.3.

LetfeC Ll’l(R”) and let {x;, } .5, be the sequence generated by the gradient method

with a constant stepsize t;, = % Assume that x, — x*. Show that if Vf(x,) #0
for all & >0, then x* is not a local maximum point.

[9, Exercise 1.3.3] Consider the minimization problem
min{x’ Qx: x € R?},

where Q is a positive definite 2 x 2 matrix. Suppose we use the diagonal scaling
matrix ,
D = <Q011 O_1> .
22

Show that the above scaling matrix improves the condition number of Q in the
sense that

#D'?QD') < x(Q)
Consider the quadratic minimization problem
min{x’ Ax: x e R},
where A is the 5 x 5 Hilbert matrix defined by

1
= i=1,2,3,4,5.
1,] l—|—]—1 ]

The matrix can be constructed via the MATLAB command 2 = hilb(5). Run
the following methods and compare the number of iterations required by each
of the methods when the initial vector is x, = (1,2,3,4,5)” to obtain a solution x
with ||V £(x)|| < 107

e gradient method with backtracking stepsize rule and parameters @ = 0.5, 8 =

0.5,s =1;
e gradient method with backtracking stepsize rule and parameters « = 0.1, 8 =
0.5,s =1;

e gradient method with exact line search;

~.

e diagonally scaled gradient method with diagonal elements D;; =
1,2,3,4,5 and exact line search;
e diagonally scaled gradient method with diagonal elements D;; =

i
1,2,3,4,5 and backtracking line search with parameters @ = 0.1, = 0.5,
s=1.
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4.7.

4.8.
4.9.

4.10.

4.11.

(i) Show that aslong as all the points a,,a,,...,a,, do not reside on the same line
in the plane, the method is well-defined, meaning that the linear least squares
problem solved at each iteration has a unique solution.

(i) Write a MATLAB function that implements the damped Gauss-Newton
method employed on problem (SL2) with a backtracking line search strat-
egy with parameters s = 1, = 8 = 0.5,¢ = 10~*. Run the function on the
two-dimensional problem (» = 2) with 5 anchors (2 = 5) and data generated
by the MATLAB commands

randn (' seed’,317);

A=randn(2,5) ;

x=randn(2,1) ;

d=sgrt(sum((A-x*ones (1,5)) .A2))+0.05xrandn(1,5);
d=d’;

The columns of the 2 x 5 matrix A are the locations of the five sensors,
x is the “true” location of the source, and d is the vector of noisy measure-
ments between the source and the sensors. Compare your results (e.g., num-
ber of iterations) to the gradient method with backtracking and parameters

s = l,a = B =05, = 107*. Start both methods with the initial vector
(1000,—500)7.

Let f(x) =x" Ax+2b”x + ¢, where A is a symmetric 7 x 7 matrix, b € R”, and
¢ € R. Show that the smallest Lipschitz constant of V£ is 2||A]).

Let f :R” — R be given by f(x) = 4/1+|[x|[>. Show that f € C".

Let f € CY(R™), and let A € R”*",b € R”. Show that the function g : R” — R
defined by g(x) = f (Ax+b) satisfies g € Cil’l(R”), where I = ||A|]2L.

Give an example of a function f € C Ll’I(R) and a starting point x, € R such that
the problem min f(x) has an optimal solution and the gradient method with con-
stant stepsize ¢ = % diverges.

Suppose that f € CLI’l(R”) and assume that V2 £(x) > 0 for any x € R”. Suppose
that the optimal value of the problem min, g, f(x) is f*. Let {x; };5, be the se-

quence generated by the gradient method with constant stepsize % Show that if
{x }4>0 is bounded, then f(x,) — f* as k — oo.
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5.2. Consider the Freudenstein and Roth test function

fx) =LA+ (X, xR’
where

[ix) =—13+2x; +((5—x)%, — 2)x,,
FH(X)==29+x; + ((x, + 1)x, — 14)x,.

(i) Show that the function f has three stationary points. Find them and prove
that one is a global minimizer, one is a strict local minimum and the third is
a saddle point.

(i) Use MATLAB to employ the following three methods on the problem of
minimizing f:
1. the gradient method with backtracking and parameters (s,a,3) =
(1,0.5,0.5).
2. the hybrid Gradient-Newton Method with parameters (s, o, 8) = (0.5,0.5).
3. damped Gauss-Newton’s method with a backtracking line search strat-
egy with parameters (s,a, 3) =(1,0.5,0.5).

All the algorithms should use the stopping criteria ||V £ (x)|| < 107°. Each
algorithm should be employed four times on the following four starting
points: (—50,7)7,(20,7)7,(20,—18)7,(5,—10)7. For each of the four start-
ing points, compare the number of iterations and the point to which each
method converged. If a method did not converge, explain why.

5.3. Let f be a twice continuously differentiable function satisfying LI > V£ (x) = mI
for some L > m > 0 and let x* be the unique minimizer of f over R”.

(i) Show that
m ,
F— ()2 2 x|

for any x e R”.

(ii) Let {x;};>o be the sequence generated by damped Newton’s method with
constant stepsize t, = 7. Show that

f ()= £ (1) 2 72V ()T (V£ () 9 ().

(iii) Show that x, — x* as k — oo.
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Proof. For p = 1, the inequality follows by summing up the inequalities |x; + y;| <
;| + |7;]- Suppose then that p > 1. We can assume that x # 0,y # 0, and x+y # 0.
Otherwise, the inequality is trivial. The function ¢(t) = t? is convex over R, since
@"(t) = p(p —1)t?=? > 0 for t > 0. Therefore, by the definition of convexity we have
that for any A;, A, >0 with A, + A, =1 one has

(At 4 Ays)? < AtP 4 Ays?.

. : _ Il _ v, Jx,] _ bl
Leti €{1,2,...,n}. Plugging A, = R, 5T, A= HXII,HrIIyIIp = and s = I, i the

above inequality yields

1 (sl b)) < =, |x|? yll, — 1y)?
Yil)h = .
(=l +lyll,)? ' L, + 1L, (Il 1], + iyl [yl
Summing the above inequality over i = 1,2,...,7, we obtain that
1 L I, lIyll,

5 2+ < =1,

(xll, +1yll,)? 5= L, +iyll, I, iyl

and hence

2l iD? < (1], +Iyll, -

i=1

Finally,

n

lIx+yll, = QZIJC +y,|1’<QlZ(Ix|+|yl|)P<|IX||p+|Iyll,, 0

=1

Exercises

7.1. For each of the following sets determine whether they are convex or not (explain-
ing your choice).
W C = {XGR” x| = 1}.
i) C,= {x ER":max;,_;, ,x < 1}.
(i) Cy= {x ER":min;_;, ,x < 1}.
(iv) C4:{X€R T x> 1.

7.2. Show that the set
M={xeR":x"Qx < (a’x)*,a’ x>0},

where Q is an 7 X 7 positive definite matrix and a € R” is a convex cone.
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Chapter 7. Convex Functions

7.3.

7.4.

7.5.

7.6.
7.7.

7.8.

7.9.

7.10.

7.11.

7.12.

7.13.
7.14.

Let / : R” — R be a convex as well as concave function. Show that /" is an affine
function; that is, there exist a € R” and & € R such that f(x) = a’x+ b for any
xeR”.

Let / : R” — R be a continuously differentiable convex function. Show that for
any ¢ > 0, the function

g.(x)=f(x)+e|lx|
1s coercive.

Let / : R” — R. Prove that f is convex if and only if for any x € R” and d # 0,
the one-dimensional function g, 4(¢) = f(x+ td) is convex.

Prove Theorem 7.13.

Let C C R” be a convex set. Let f be a convex function over C, and let g be
a strictly convex function over C. Show that the sum function f + g is strictly
convex over C.

(i) Let f be a convex function defined on a convex set C. Suppose that f is not
strictly convex on C. Prove that there exist x,y € R”(x # y) such that f is
affine over the segment [x,y].

(ii) Prove that the function f(x)=x* is strictly convex on R and that g(x) = x?
for p > 11is strictly convex over R, .

Show that the log-sum-exp function f(x) = In (Zf‘zl e’“) is not strictly convex
over R”.

Show that the following functions are convex over the specified domain C:
@) f (31, %, %3) = — /X%, + 2x] + 27 + 33 — 2x, X, — 2x,x; over R3 .
(i) f(x)=||x||* over R".
(i) f(x) =37, x; In(x;)— (7 %) In (37, x;) over R,
(v) f(x)=+/xTQx+ 1 over R”, where Q > 0is an 7 X 7 matrix.

) £ (1,50, %5) = max{y/x? +x2 +20x2 — x,2, — 42,05 + 1, (xF +x3 +x, +x, +
2)?} over R3.

(vi) f(xl,xz):(fo+3x22)(%x12+ %xzz)
Let A€R”*”, and let f : R” — R be defined by

f(x)=In <zm: eA'X> ,
i=1

where A, is the ith row of A. Prove that f is convex over R”.

Prove that the following set is a convex subset of R”*2:

X
C= y :||X||2§yz,X€R”,y,zER+
z
. 2 .
Show that the function f(x;,x,,x;) = —e(™*1+%72%) is not convex over R”.

Prove that the geometric mean function f(x) = {/T]", x; is concave over R .
Is it strictly concave over R7}  ?



Downloaded 04/29/19 to 128.208.201.54. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

Exercises

145

7.29

7.30

7.31

7.32

7.33

7.34

7.35.

7.36

7.37

7.38

(iv) Prove that for any x,y € R”
1
(V) =V (0):x=y) 2 ZIV/®) = V/ () forany xy € R".

. Let f: R” - RU{o0o} be an extended real-valued function. Show that f is convex
if and only if epi(f) is convex.

. Show that the support function of the set § = {x € R” : x’ Qx < 1}, where Q > 0,
iso5(y)=+y" Q-
. Let S = {x e R” : a’x < b}, where 0 #a € R” and b € R. Find the support

function o.

. Let p > 1. Show that the support function of § = {x € R” : [|x||, < 1} is o5(y) =
[lyll,» where g is defined by the relation % + % =1

. Let fo,fy,-.-,f,, be convex functions over R” and consider the perturbation

function

F(b):mxin{fo(x) fi(x)<b;,i=1,2,...,m}.

Assume that for any b € R” the minimization problem in the above definition of
F(b) has an optimal solution. Show that F is convex over R”.

. Let C CR” be a convex set and let ¢,,...,¢,, be convex functions over C. Let U
be the following subset of R”:

U={yeR":¢,x)<y,...,¢,,(x)<y,, forsomex € C}.

Show that U is a convex set.
(i) Show that the extreme points of the unit simplex A, are the unit-vectors
€1,€55...,€,.

(i) Find the optimal solution of the problem

max 57xf + 65335 + 17x3 + 96x,x, — 32, %3 + 8,5 + 27x, — 84x, + 20x,
st x;+x,+x;=1

Xq5 %5, %3 2 0.

. Prove that for any x,,x,,...,x, € R, the following inequality holds:
n n 2
=1t 2 _

n n

. Prove that for any x,x,,...,x, € R, the following inequality holds:
n 2 n 3
i=1% i=1%
X, nox;

i=1"i i=1"

. Let xy,%,,...,x, > Osatisty >.” | x; = 1. Prove that

1

Zn: Xi >1/ i
o V/1—x, V-1
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Chapter 8. Convex Optimization

We can now use CVX to solve the equivalent problem (8.13):

cvx_begin

variable z(3)

minimize (d’xz-2xabs (f) " xsqgrt(z))
subject to

sum(z) <=1

z>=0

cvx_end

The optimal solution is then computed by y; =—sgn(f;),/z; and then x = Uy:

>> y=-gign(f) .xsqgrt(z) ;
>> x=Ux*y

X =
-0.2300
-0.7259
0.6482
|
Exercises
8.1. Consider the problem
min  f(x)
®) st gx)<o0
xeX,
where f and g are convex functions over R” and X CR” is a convex set. Suppose
that x* is an optimal solution of (P) that satisfies g(x*) < 0. Show that x* is also an
optimal solution of the problem
min  f(x)
st. xeX.
8.2. Let C = B[x,, 7], where x, € R” and » > 0 are given. Find a formula for the
orthogonal projection operator P.
8.3. Let f be a strictly convex function over R” and let g be a convex function over
R”. Define the function
h(x)= f (Ax) + g(x),
where A € R”*”. Assume that x* and y* are optimal solutions of the uncon-
strained problem of minimizing 4. Show that Ax* = Ay*.
8.4. For each of the following optimization problems (a) show that it is convex,

(b) write a CVX code that solves it, and (c) write down the optimal solution (by
running CVX).
0 |
min  x7 +2x,%x, +2xF +x3 4 3x; —4x,
2
s.t. \/lez+x1x2+4x22+4+w<6

X1+x, -

X5 %Xy, %3 2> 1.
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