
Exercises 79

Finally, using the latter inequality along with the fact that for every k = 0,1, . . . , n the
obvious inequality ‖∇ f (xk )‖2 ≥mink=0,1,...,n ‖∇ f (xk )‖2 holds, it follows that

f (x0)− f ∗ ≥M (n+ 1) min
k=0,1,...,n

‖∇ f (xk )‖2,

implying the desired result.

Exercises
4.1. Let f ∈C 1,1

L (�n) and let {xk}k≥0 be the sequence generated by the gradient method
with a constant stepsize tk =

1
L . Assume that xk → x∗. Show that if ∇ f (xk ) �= 0

for all k ≥ 0, then x∗ is not a local maximum point.
4.2. [9, Exercise 1.3.3] Consider the minimization problem

min{xT Qx : x ∈�2},
where Q is a positive definite 2× 2 matrix. Suppose we use the diagonal scaling
matrix

D=
"

Q−1
11 0
0 Q−1

22

#
.

Show that the above scaling matrix improves the condition number of Q in the
sense that

κ(D1/2QD1/2)≤ κ(Q).
4.3. Consider the quadratic minimization problem

min{xT Ax : x ∈�5},
where A is the 5× 5 Hilbert matrix defined by

Ai , j =
1

i + j − 1
, i , j = 1,2,3,4,5.

The matrix can be constructed via the MATLAB command A = hilb(5). Run
the following methods and compare the number of iterations required by each
of the methods when the initial vector is x0 = (1,2,3,4,5)T to obtain a solution x
with ‖∇ f (x)‖ ≤ 10−4:

• gradient method with backtracking stepsize rule and parameters α= 0.5,β=
0.5, s = 1;

• gradient method with backtracking stepsize rule and parameters α= 0.1,β=
0.5, s = 1;

• gradient method with exact line search;

• diagonally scaled gradient method with diagonal elements Dii =
1

Aii
, i =

1,2,3,4,5 and exact line search;

• diagonally scaled gradient method with diagonal elements Dii =
1

Aii
, i =

1,2,3,4,5 and backtracking line search with parameters α = 0.1,β = 0.5,
s = 1.
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Exercises 81

(i) Show that as long as all the points a1,a2, . . . ,am do not reside on the same line
in the plane, the method is well-defined, meaning that the linear least squares
problem solved at each iteration has a unique solution.

(ii) Write a MATLAB function that implements the damped Gauss–Newton
method employed on problem (SL2) with a backtracking line search strat-
egy with parameters s = 1,α = β = 0.5,ε = 10−4. Run the function on the
two-dimensional problem (n = 2) with 5 anchors (m = 5) and data generated
by the MATLAB commands

randn(’seed’,317);
A=randn(2,5);
x=randn(2,1);
d=sqrt(sum((A-x*ones(1,5)).^2))+0.05*randn(1,5);
d=d’;

The columns of the 2 × 5 matrix A are the locations of the five sensors,
x is the “true” location of the source, and d is the vector of noisy measure-
ments between the source and the sensors. Compare your results (e.g., num-
ber of iterations) to the gradient method with backtracking and parameters
s = 1,α = β = 0.5,ε = 10−4. Start both methods with the initial vector
(1000,−500)T .

4.7. Let f (x) = xT Ax+ 2bT x+ c , where A is a symmetric n× n matrix, b ∈ �n , and
c ∈�. Show that the smallest Lipschitz constant of∇ f is 2‖A‖.

4.8. Let f :�n→� be given by f (x) =
�

1+ ‖x‖2. Show that f ∈C 1,1
1 .

4.9. Let f ∈C 1,1
L (�m), and let A ∈�m×n ,b ∈�m . Show that the function g :�n →�

defined by g (x) = f (Ax+b) satisfies g ∈C 1,1
L̃
(�n), where L̃= ‖A‖2L.

4.10. Give an example of a function f ∈ C 1,1
L (�) and a starting point x0 ∈ � such that

the problem min f (x) has an optimal solution and the gradient method with con-
stant stepsize t = 2

L diverges.

4.11. Suppose that f ∈ C 1,1
L (�n) and assume that ∇2 f (x) � 0 for any x ∈ �n . Suppose

that the optimal value of the problem minx∈�n f (x) is f ∗. Let {xk}k≥0 be the se-
quence generated by the gradient method with constant stepsize 1

L . Show that if
{xk}k≥0 is bounded, then f (xk )→ f ∗ as k→∞.

D
ow

nl
oa

de
d 

04
/2

9/
19

 to
 1

28
.2

08
.2

01
.5

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Exercises 95

5.2. Consider the Freudenstein and Roth test function

f (x) = f1(x)
2+ f2(x)

2, x ∈�2,

where

f1(x) =−13+ x1+((5− x2)x2− 2)x2,
f2(x) =−29+ x1+((x2+ 1)x2− 14)x2.

(i) Show that the function f has three stationary points. Find them and prove
that one is a global minimizer, one is a strict local minimum and the third is
a saddle point.

(ii) Use MATLAB to employ the following three methods on the problem of
minimizing f :

1. the gradient method with backtracking and parameters (s ,α,β) =
(1,0.5,0.5).

2. the hybrid Gradient-Newton Method with parameters (s ,α,β) = (0.5,0.5).
3. damped Gauss–Newton’s method with a backtracking line search strat-

egy with parameters (s ,α,β) = (1,0.5,0.5).

All the algorithms should use the stopping criteria ‖∇ f (x)‖ ≤ 10−5. Each
algorithm should be employed four times on the following four starting
points: (−50,7)T , (20,7)T , (20,−18)T , (5,−10)T . For each of the four start-
ing points, compare the number of iterations and the point to which each
method converged. If a method did not converge, explain why.

5.3. Let f be a twice continuously differentiable function satisfying LI�∇2 f (x)� mI
for some L> m > 0 and let x∗ be the unique minimizer of f over �n .

(i) Show that
f (x)− f (x∗)≥ m

2
‖x−x∗‖2

for any x ∈�n .

(ii) Let {xk}k≥0 be the sequence generated by damped Newton’s method with
constant stepsize tk =

m
L . Show that

f (xk )− f (xk+1)≥ m
2L
∇ f (xk )

T (∇2 f (xk ))
−1∇ f (xk ).

(iii) Show that xk → x∗ as k→∞.
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Exercises 141

Proof. For p = 1, the inequality follows by summing up the inequalities |xi + yi | ≤|xi |+ |yi |. Suppose then that p > 1. We can assume that x �= 0,y �= 0, and x+ y �= 0.
Otherwise, the inequality is trivial. The function ϕ(t ) = t p is convex over �+ since
ϕ′′(t ) = p(p − 1)t p−2 > 0 for t > 0. Therefore, by the definition of convexity we have
that for any λ1,λ2 ≥ 0 with λ1+λ2 = 1 one has

(λ1 t +λ2 s)p ≤ λ1 t p +λ2 s p .

Let i ∈ {1,2, . . . , n}. Plugging λ1 =
‖x‖p

‖x‖p+‖y‖p
,λ2 =

‖y‖p

‖x‖p+‖y‖p
, t = |xi |‖x‖p

, and s = |yi |‖y‖p
in the

above inequality yields

1
(‖x‖p + ‖y‖p )p

(|xi |+ |yi |)p ≤
‖x‖p

‖x‖p + ‖y‖p

|xi |p
‖x‖p

p
+

‖y‖p

‖x‖p + ‖y‖p

|yi |p
‖y‖p

p
.

Summing the above inequality over i = 1,2, . . . , n, we obtain that

1
(‖x‖p + ‖y‖p)p

n∑
i=1

(|xi |+ |yi |)p ≤
‖x‖p

‖x‖p + ‖y‖p
+

‖y‖p

‖x‖p + ‖y‖p
= 1,

and hence
n∑

i=1

(|xi |+ |yi |)p ≤ (‖x‖p + ‖y‖p )
p .

Finally,

‖x+ y‖p =
p

√√√ n∑
i=1

|xi + yi |p ≤ p

√√√ n∑
i=1

(|xi |+ |yi |)p ≤ ‖x‖p + ‖y‖p .

Exercises
7.1. For each of the following sets determine whether they are convex or not (explain-

ing your choice).

(i) C1 =
�
x ∈�n : ‖x‖2 = 1

	
.

(ii) C2 =
�
x ∈�n : maxi=1,2,...,n xi ≤ 1

	
.

(iii) C3 =
�
x ∈�n : mini=1,2,...,n xi ≤ 1

	
.

(iv) C4 =
�
x ∈�n

++ :
∏n

i=1 xi ≥ 1
	

.

7.2. Show that the set

M = {x ∈�n : xT Qx≤ (aT x)2,aT x≥ 0},
where Q is an n× n positive definite matrix and a ∈�n is a convex cone.
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142 Chapter 7. Convex Functions

7.3. Let f : �n → � be a convex as well as concave function. Show that f is an affine
function; that is, there exist a ∈ �n and b ∈ � such that f (x) = aT x+ b for any
x ∈�n .

7.4. Let f : �n → � be a continuously differentiable convex function. Show that for
any ε > 0, the function

gε(x) = f (x)+ ε‖x‖2

is coercive.
7.5. Let f : �n → �. Prove that f is convex if and only if for any x ∈ �n and d �= 0,

the one-dimensional function gx,d(t ) = f (x+ td) is convex.
7.6. Prove Theorem 7.13.
7.7. Let C ⊆ �n be a convex set. Let f be a convex function over C , and let g be

a strictly convex function over C . Show that the sum function f + g is strictly
convex over C .

7.8. (i) Let f be a convex function defined on a convex set C . Suppose that f is not
strictly convex on C . Prove that there exist x,y ∈ �n(x �= y) such that f is
affine over the segment [x,y].

(ii) Prove that the function f (x) = x4 is strictly convex on � and that g (x) = x p

for p > 1 is strictly convex over �+.
7.9. Show that the log-sum-exp function f (x) = ln

�∑n
i=1 e xi

�
is not strictly convex

over �n .
7.10. Show that the following functions are convex over the specified domain C :

(i) f (x1, x2, x3) =−�x1x2+ 2x2
1 + 2x2

2 + 3x2
3 − 2x1 x2− 2x2 x3 over �3

++.

(ii) f (x) = ‖x‖4 over �n .

(iii) f (x) =
∑n

i=1 xi ln(xi )−
�∑n

i=1 xi

�
ln
�∑n

i=1 xi

�
over �n

++.

(iv) f (x) =
�

xT Qx+ 1 over �n , where Q� 0 is an n× n matrix.

(v) f (x1, x2, x3) =max{�x2
1 + x2

2 + 20x2
3 − x1 x2− 4x2x3+ 1, (x2

1 + x2
2 + x1+ x2+

2)2} over �3.

(vi) f (x1, x2) = (2x2
1 + 3x2

2 )
&

1
2 x2

1 +
1
3 x2

2

'
.

7.11. Let A ∈�m×n , and let f :�n →� be defined by

f (x) = ln

 
m∑

i=1

eAi x

!
,

where Ai is the ith row of A. Prove that f is convex over �n .
7.12. Prove that the following set is a convex subset of �n+2:

C =

⎧⎨
⎩
⎛
⎝x

y
z

⎞
⎠ : ‖x‖2 ≤ y z,x ∈�n , y, z ∈�+

⎫⎬
⎭ .

7.13. Show that the function f (x1, x2, x3) =−e (−x1+x2−2x3)2 is not convex over �n .
7.14. Prove that the geometric mean function f (x) = n

�∏n
i=1 xi is concave over �n

++.
Is it strictly concave over �n

++?
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Exercises 145

(iv) Prove that for any x,y ∈�n

〈∇ f (x)−∇ f (y),x− y〉 ≥ 1
L
‖∇ f (x)−∇ f (y)‖2 for any x,y ∈�n .

7.29. Let f :�n →�∪{∞} be an extended real-valued function. Show that f is convex
if and only if epi( f ) is convex.

7.30. Show that the support function of the set S = {x ∈�n : xT Qx≤ 1}, where Q� 0,
is σS (y) =

�
yT Q−1y.

7.31. Let S = {x ∈ �n : aT x ≤ b}, where 0 �= a ∈ �n and b ∈ �. Find the support
function σS .

7.32. Let p > 1. Show that the support function of S = {x ∈ �n : ‖x‖p ≤ 1} is σS (y) =
‖y‖q , where q is defined by the relation 1

p +
1
q = 1.

7.33. Let f0, f1, . . . , fm be convex functions over �n and consider the perturbation
function

F (b) =min
x
{ f0(x) : fi (x)≤ bi , i = 1,2, . . . , m}.

Assume that for any b ∈�m the minimization problem in the above definition of
F (b) has an optimal solution. Show that F is convex over �m .

7.34. Let C ⊆�n be a convex set and let φ1, . . . ,φm be convex functions over C . Let U
be the following subset of �m :

U = {y ∈�m :φ1(x)≤ y1, . . . ,φm(x)≤ ym for some x ∈C } .
Show that U is a convex set.

7.35. (i) Show that the extreme points of the unit simplex Δn are the unit-vectors
e1,e2, . . . ,en .

(ii) Find the optimal solution of the problem

max 57x2
1 + 65x2

2 + 17x2
3 + 96x1x2− 32x1x3+ 8x2 x3+ 27x1− 84x2+ 20x3

s.t. x1+ x2+ x3 = 1
x1, x2, x3 ≥ 0.

7.36. Prove that for any x1, x2, . . . , xn ∈�+ the following inequality holds:

∑n
i=1 xi

n
≤
√√√∑n

i=1 x2
i

n
.

7.37. Prove that for any x1, x2, . . . , xn ∈�++ the following inequality holds:

∑n
i=1 x2

i∑n
i=1 xi

≤
√√√√∑n

i=1 x3
i∑n

i=1 xi
.

7.38. Let x1, x2, . . . , xn > 0 satisfy
∑n

i=1 xi = 1. Prove that

n∑
i=1

xi�
1− xi

≥
F n

n− 1
.
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166 Chapter 8. Convex Optimization

We can now use CVX to solve the equivalent problem (8.13):

cvx_begin
variable z(3)
minimize(d’*z-2*abs(f)’*sqrt(z))
subject to
sum(z)<=1
z>=0
cvx_end

The optimal solution is then computed by yi =−sgn( fi )
�zi and then x=Uy:

>> y=-sign(f).*sqrt(z);
>> x=U*y
x =

-0.2300
-0.7259
0.6482

Exercises
8.1. Consider the problem

(P)
min f (x)
s.t. g (x)≤ 0

x ∈X ,

where f and g are convex functions over �n and X ⊆�n is a convex set. Suppose
that x∗ is an optimal solution of (P) that satisfies g (x∗)< 0. Show that x∗ is also an
optimal solution of the problem

min f (x)
s.t. x ∈X .

8.2. Let C = B[x0, r ], where x0 ∈ �n and r > 0 are given. Find a formula for the
orthogonal projection operator PC .

8.3. Let f be a strictly convex function over �m and let g be a convex function over
�n . Define the function

h(x) = f (Ax)+ g (x),

where A ∈ �m×n . Assume that x∗ and y∗ are optimal solutions of the uncon-
strained problem of minimizing h. Show that Ax∗ =Ay∗.

8.4. For each of the following optimization problems (a) show that it is convex,
(b) write a CVX code that solves it, and (c) write down the optimal solution (by
running CVX).

(i)
min x2

1 + 2x1x2+ 2x2
2 + x2

3 + 3x1− 4x2

s.t.
�

2x2
1 + x1 x2+ 4x2

2 + 4+ (x1−x2+x3+1)2

x1+x2
≤ 6

x1, x2, x3 ≥ 1.
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