
Nonlinear Optimization Homework 3 (Solutions)
MATH 408 Spring 2019

Exercises: 2.2, 2.4 - 2.7, 2.13, 2.15, 2.17 in “Introduction to Nonlinear Optimization:
Theory, Algorithms, and Applications with MATLAB”

Problem 2.2 (3 pts) Let a ∈ Rn be a nonzero vectpr. Show that the maximum of
f(x) = aTx over B = {x ∈ Rn : ‖x‖ ≤ 1} is attained at x∗ = a

‖a‖ and that the maximal

value is ‖a‖.
By the Cauchy-Schwarz inequality, we know that for all x, aTx ≤ ‖a‖‖x‖, so for x ∈ B,

aTx ≤ ‖a‖. On the other hand, by taking x∗ = a
‖a‖ ∈ B, we achieve equality aTx∗ = aT a

‖a‖ =
‖a‖2
‖a‖ = ‖a‖, proving the result.

Problem 2.4 (2 pts) Show that if A,B are n × n positive semidefinite (psd) matrices,
then A+B is also psd.

Suppose A,B � 0. For all x ∈ Rn, observe that

xT (A+B)x = xTAx︸ ︷︷ ︸
≥0

+xTBx︸ ︷︷ ︸
≥0

≥ 0

hence A+B � 0

Problem 2.5 (3pts) Let A ∈ Rn×n and B ∈ Rm×m be two symmetric matrices. Prove the
following are equivalent.

(1) A and B are psd

(2) C =

(
A 0n×m

0m×n B

)
is psd.

I will give two solutions. The first is more straightforward while the second argues about
eigenvalues. While there is nothing wrong with the eigenvalue argument, almost everyone
who tried to make it did so imprecisely or was unclear about the fact that the eigenvalues
of C are the same as those of A and B.

First suppose that A,B � 0. Since any element of Rn+m is of the form (x, y) for some
x ∈ Rn and y ∈ Rm, we compute(

x
y

)T (
A 0n×m

0m×n B

)(
x
y

)
= xTAx+ yTBy ≥ 0

Conversely suppose C � 0. For any x ∈ Rn, note that 0 ≤ (x, 0)TC(x, 0) = xTAx, so
A � 0. One can show B � 0 similarly by taking y ∈ Rm arbitrary and x = 0.
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Now with eigenvalues. Observe that the characteristic polynomial of C is

p(λ) = det(A− λI) det(B − λI)

since C is block diagonal. The zeroes of the characteristic polynomial are the eigenvalues
of C. Note that the eigenvalues of C are simply those of A and B because det(A − λI)
and det(B − λI) are the characteristic polynomials of A and B respectively. Hence the
eigenvalues of C are nonnegative iff the eigenvalues of both A and B are nonnegative which
proves the claim.

Problem 2.6 (4pts) Let B ∈ Rn×k and let A = BBT .

(1) Prove that A � 0

For any x ∈ Rn, xTAx = xTBBTx = (BTx)T (BTx) = ‖BTx‖2 ≥ 0, so A � 0.

(2) Prove that A � 0 if and only if B has full row rank.

Suppose A � 0. Then for any x 6= 0, xTAx = xTBBTx = ‖BTx‖2 > 0, so
BTx 6= 0. Thus Null(BT ) = {0}, meaning B has full row rank.

Conversely if B has full row rank, then for any x 6= 0, BTx 6= 0, so xTAx =
‖BTx‖2 > 0, so A � 0.

Problem 2.7

(1) (3 pts) Let A be an n × n symmetric matrix. Show that A � 0 iff there exists a
B ∈ Rn×n such that A = BBT .

Suppose A � 0 and let A = UΛUT be an eigenvalue decomposition of A. Since
Λii = λi(A) ≥ 0 for all i,

√
Λ = diag(

√
λ1(A), . . . ,

√
λn(A)) is well defined. Letting

B = U
√

Λ, it follows that A = BBT .
See Problem 2.6(1) for the reverse implication.

(2) (2 pts) Let x ∈ Rn and let A be defined as

Aij = xixj, for i, j = 1, . . . , n

Show that A � 0 and that it is not a positive definite matrix when n > 1.
Observe that A = xxT where we think of x as an n × 1 matrix so by Problem

2.6(1), A � 0. Note that A = xxT is a rank 1 matrix with Range(A) = Span{x},
hence nullity(A) = n − rank(A) = n − 1 > 0 for n > 1, which means that A has an
eigenvalue equal to 0, so A is not positive definite.

Problem 2.13 Determine if the following matrices are positive/negative semidefinite/definite
or indefinite.

2



(1) (1 pt)


2 2 0 0
2 2 0 0
0 0 3 1
0 0 1 3

 � 0 (see problem 2.5)

(2) (1 pt)

2 2 2
2 3 3
2 3 3

 � 0 (by principal minors test)

(3) (1 pt)

2 1 3
1 2 1
3 1 2

 indefinite (see 1,2 and 1,3 minors)

(4) (2 pts)

−5 1 1
1 −7 1
1 1 −5

 � 0 (observe that the negative of this matrix is psd)

Problem 2.15 Determine whether the following functions are coercive or not. (1 pt each)
Most did not approach this problem particularly rigorously but the grading was done

lightly.

(1) f(x1, x2) = x41 + x42

Coercive. I was not expecting this level of detail, but here is a proof. By a lemma
from class notes, recall that f is coercive if every sublevel set Lα := {x : f(x) ≤ α}
is compact. By continuity of f , each sublevel set is closed, so we need only show it
is bounded. Indeed, if ‖(x1, x2)‖44 = x41 + x42 ≤ α, then ‖(x1, x2)‖4 ≤ α1/4 for any
(x1, x2) ∈ Lα. By equivalence of norms, there also exists some constant M(α) such
that ‖(x1, x2)‖2 ≤M(α) for all (x1, x2) ∈ Lα, hence Lα is bounded. This proves that
Lα is compact for all α ∈ R.

(2) f(x1, x2) = ex
2
1 + ex

2
2 − x2001 − x2002

Coercive. Doing this rigorously in similar fashion to above turns out to be a mess,
but it boils down to the fact that ex

2
i grows faster than x200i for sufficiently large value

of xi, which most people realized.

(3) f(x1, x2) = 2x21 − 8x1x2 + x22

Not coercive. This is a quadratic defined by H =

(
2 −4
−4 1

)
which is indefinite.

(4) f(x1, x2) = 4x21 + 2x1x2 + 2x22

Coercive. This is a quadratic defined by H =

(
4 1
1 2

)
which is positive definite.

(5) f(x1, x2, x3) = x31 + x32 + x33

Not coercive. For v = (1,−1, 0), ‖tv‖ → ∞ as t→∞, but f(tv) = 0 for all t.

(6) f(x1, x2) = x21 − 2x1x
2
2 + x42
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Not coercive. Note f = (x1 − x22)2 so for v = (1, 1), ‖tv‖ → ∞ as t → ∞, but
f(tv) = 0 for all t.

(7) f(x) = xTAx
‖x‖+1

where A ∈ Rn×n is positive definite.

By Rayleigh Ritz, λmin(A)‖x‖2 ≤ xTAx for any x. Dividing both sides by ‖x‖+ 1,
we have

λmin(A)‖x‖2

‖x‖+ 1
≤ xTAx

‖x‖+ 1

Observe that the LHS →∞ as ‖x‖ → ∞, hence the RHS is coercive.

Problem 2.17 (3pts each) Find all stationary points of the following functions and clas-
sify them according to whether they are saddle points, strict/nonstrict local/global mini-
mum/maximum points:

For all of the following, the method is to set ∇f(x) = 0 to find stationary points x and
determine the eigenvalues of the Hessian ∇2f(x) at each stationary point x. The eigenvalues
of the Hessian evaluated at x give information about the curvature of the function, hence
allow us to classify the stationary points.

(1) f(x1, x2) = (4x21 − x2)2

∇f(x) =

(
16x1(4x

2
1 − x2)

−2(4x21 − x2)

)
which equals 0 when x2 = 4x21, so the set of stationary points is the 1 dimensional
family of points which satisfy this equation. Observe that for any such x = (x1, 4x

2
1)

the Hessian evaluates to

∇2f(x) =

(
192x21 − 16(4x21) −16x1

−16x1 2

)
=

(
128x21 −16x1
−16x1 2

)
By the principal minors test, this is psd at every stationary point, hence each sta-
tionary point is at least a local minimizer. Observe that in fact f(x) = 0 ≤ f(x) for
all x for every stationary point x, so they are nonstrict global minimizers.

(2) f(x1, x2, x3) = x41 − 2x21 + x22 + 2x2x3 + 2x23

∇f(x) =

4x1(x
2
1 − 1)

2x2 + 2x3
2x2 + 4x3


which equals 0 when x1 = 0,±1 and x2 = −x3 and x2 = −2x3, i.e., x2 = x3 = 0.
The Hessian is

∇2f(x) =

12x21 − 4 0 0
0 2 2
0 2 4


which is indefinite at (0, 0, 0 and positive definite at (1, 0, 0) and (−1, 0, 0), hence
(0, 0, 0) is a saddle point and (1, 0, 0) and (−1, 0, 0) are strict local minimizers. They
are in fact nonstrict global because f is bounded below by f(1, 0, 0) = f(−1, 0, 0) =
−1.
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(3) f(x1, x2) = 2x32 − 6x22 + 3x21x2

∇f(x) =

(
6x1x2

6x22 − 12x2 + 3x21

)
which equals 0 when x1 = x2 = 0 or when x1 = 0 and x2 = 2. The Hessian is

∇2f(x) =

(
6x2 6x1
6x1 12x2 − 12

)
which is negative semidefinite at (0, 0) and positive definite at (0, 2). Hence (0, 2) is a
strict local minimizer and (0, 0) is a candidate to be a local maximizer, however, notice
that for any small neighborhood of (0, 0), f increases in the positive x1 direction and
decreases in the positive x2 direction, so (0, 0) is a saddle point.

(4) f(x1, x2) = x41 + 2x21x2 + x22 − 4x21 − 8x1 − 8x2

∇f(x) =

(
4x31 + 4x1x2 − 8x1 − 8

2x21 + 2x2 − 8

)
which equals 0 at (1, 3). The Hessian is

∇2f(x) =

(
12x21 + 4x2 − 8 4x1

4x1 2

)
which is positive definite at (1, 3), hence (1, 3) is a strict local minimizer. It is in fact
global because f(x) = (x21 + x2 − 4)2 + (x1 − 1)2 − 20 ≥ −20 while f(1, 3) = −20.

(5) f(x1, x2) = (x1 − 2x2)
4 + 64x1x2

∇f(x) =

(
4(x1 − 2x2)

3 + 64x2
−8(x1 − 2x2)

3 + 64x1

)
which equals 0 at (0, 0), (−1, 1/2), (1,−1/2). The Hessian is

∇2f(x) =

(
12(x1 − 2x2)

2 64− 24(x1 − 2x2)
2

64− 24(x1 − 2x2)
2 48(x1 − 2x2)

2

)
which is indefinite at (0, 0), and positive definite at (−1, 1/2) and (1,−1/2). Hence
(0, 0) is a saddle point and (−1, 1/2) and (1,−1/2) are strict local minimizers.

(6) f(x1, x2) = 2x21 + 3x22 − 2x1x2 + 2x1 − 3x2

∇f(x) =

(
4x1 − 2x2 + 2
6x2 − 2x1 − 3

)
which equals 0 at (−3/10, 2/5). The Hessian is

∇2f(x) =

(
4 −2
−2 6

)
which is constant and positive definite, hence (−3/10, 2/5) is a strict global minimizer
since f is coercive because f is quadratic and ∇2f � 0 everywhere.
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(7) f(x1, x2) = x21 + 4x1x2 + x22 + x1 − x2

∇f(x) =

(
2x1 + 4x2 + 1
4x1 + 2x2 − 1

)
which equals 0 at (1/2,−1/2). The Hessian is

∇2f(x) =

(
2 4
2 4

)
which is constant and indefinite, hence (1/2,−1/2) is a saddle point.
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