Nonlinear Optimization Homework 1
MATH 408 Spring 2019

Reading in the supplementary text (Nonlinear Optimization): Chapter 1, Chapter
2: page 9 to top of page 10, section 2.2, Sections 3-5,8; Chapter 4: Sections 1-4.

Exercises: Do the following exercises, justifying all steps.

1. Consider the system
41’1 - Ty = 200
91’1 + X9 — Tr3 = 200
71’1 — Iy + 21‘3 = 200.

(a) (1 point) Write the augmented matrix corresponding to this system.

0 -1 200
1 =1 200

4
9
7 —1 2 200

(b) (3 point) Reduce the augmented system in part (a) to echelon form.

100 30
0 1 0 —150
001 -—80
(¢) (2 point) Describe the set of solutions to the given system.
The unique solution is (21, 2, z3) = (30, —150, —80).

2. (6 points) Solve the following system of linear equations

Ty + 2z = 1
—x1 — 4dx9 + x3 = 2
2.132 + 3 = 0.
1 2 01 1 00 5/2
-1 -4 1 2| ~[0 10 -3/4
0 2 10 00 1 3/2

so the unique solution is (21, xq, x3) = (5/2, —3/4,3/2).
3. (3 points) Represent the linear span of the four vectors as the range space of some matrix:
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Span{zy, xe, x3, x4} = Range(A) where A =

=N N
TN DN~
— =
— = N =g

4. (3 points) Compute a basis for Nul(AT)t where A is the matrix

A:

=N DN =

TN DN =
—_

— = N

By the Fundamental Theorem of the Alternative, Nul(AT)*+ = Range(A). A straightfor-
ward computation confirms the columns of A are linearly independent, so Nul(AT)+ =
Range(A) = R*.

5. Consider the matrix
2 1 -1
A=|1 2 -1
-1 -1 2
(a) (3 points) Find the eigenvalues of the matrix A. Is any eigenvalue repeated?

det(A— M) = =N +6)7 =9\ +4=—(A—1)>(A—4)

so eigenvalues of A are Ay =4, Ay = A3 = 1.

(b) (4 points) Find three eigenvectors uy, ug, ug of A that are orthonormal.
Find eigenvectors u; by determining Nul(A — )\ I) and use Gram-Schmidt to or-

thonormalize. There are many possibilities for us, ug below.

1 -1 1 1 1 -1

Ul = —= —1 3 Uy = —= —1 5 Uz = ——= —1

V31 V2 \ o Voo

(c¢) (1 point) State a spectral (eigenvalue) decomposition of A.

|| 4 0 0
A=UAUT where U = | uy uy wus | fromaboveand A= [0 1 0
|| 0 01
6. Recall that a function f: R™ — R is said to be differentiable at a point x € R"™ if there is

a vector g € R" such that

fly)=f@)+g"(y—=x)+ oy — ) .

The vector g is called the gradient of f at x and is denoted g = V f(x). Note that, when
defined, the relation z — V f(z) is a mapping from R” to R", i.e. Vf: R" — R". We
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say that f is continuously differentiable at z € R" if the mapping V f is continuous at x.
When f is continuously differentiable at x € R™, then V f(x) is easily computed as the
vector of partial derivatives of f at x, i.e.

Vi@ = | ™

Compute the gradient of the following functions.

(a) (2 points) f(z) = 2% + 23 — 321 — 1529 + 25 on R?
(323 -3
Vi) = (3x§ - 15)

w0 = (%" o)

6132

(b) (2 points) f(z) = 2% + 23 — sin(x125) on R?

Vf(z) = <2x1 — 79 cos(x1x2)>

2x9 — 1 cos(x1x2)
9 2 + z2sin(z,19) — cos(x1x9) + w19 Sin(x122)
— cos(122) + T1x9 sin(x1 o) 2 + xysin(xyxq)
(c) (2 points) f(x) = [lz||* = > }_, 27 on R”
For each of the below, the gradient and Hessian is specified component-wise.
(Vf(z)); = 2

2 ifi=j

(V2f(x))ij = {O i

(d) (2 points) f(x) = l=l? on R7
(Vf(x)); = 2,elll’®

2elel 4 gg2ellel® i —
4$Z-:Eje“‘””2 ifi #j

(V2f ()i = {



(e) (2 points) f(x) = x1x923- -2, on R™
(Vf@)i =]
J#i
0 ifi=j

(V2f(2))iy = {Hk;éi,j o i

(f) (2 points) f(z) = —log(zixexs---x,) on the set {xr € R™ : z; > 0 foralli =
L,...,n}
T 1
(Vfa)) = L

Hi:l Lj i

1 . . .
) = ifi=
(V2f ()i {0 oy

7. (12 points) Let R™*™ denote the set of real n X n square matrices. A function f: R" — R
is said to be twice differentiable at a point x € R" if is differentiable at x and there is a
matrix H € R™" such that

fly) = f@) + V@) (y =)+ 50y —2) Hy — 2) + o([ly — /).

The matrix H is called the Hessian of f at z and is denoted V2f(z). Note that, when
defined, the relation x — V?f(r) is a mapping from R" to R™*" ie. V2f: R" — R"™"
We say that f is twice continuously differentiable at x € R™ if the mapping V2f is
continuous at z. It can be shown that if f is twice continuously differentiable at a point
r € R", then the matrix V2f(z) is symmetric, i.e. V2f(x) = V2f(x)?, in which case
V2 f(z) is the matrix of second partial derivatives of f at z:

o2 f o%f o2 f
Dz D (x) Duadan () ... Dapdon (x)
_oF (x o F x) ... _Of (x
VQf(x) _ Ox10x2 Oxo0x2 0xn0xo
02f 02f ' 02f
axlaj;n (x) axgafmn () ... 8xn8f:vn (@)

Compute the Hessian of the functions given in problem 6 above.

See above.



