
Nonlinear Optimization Homework 1
MATH 408 Spring 2019

Reading in the supplementary text (Nonlinear Optimization): Chapter 1, Chapter
2: page 9 to top of page 10, section 2.2, Sections 3-5,8; Chapter 4: Sections 1-4.

Exercises: Do the following exercises, justifying all steps.

1. Consider the system
4x1 − x3 = 200
9x1 + x2 − x3 = 200
7x1 − x2 + 2x3 = 200.

(a) (1 point) Write the augmented matrix corresponding to this system.4 0 −1 200
9 1 −1 200
7 −1 2 200


(b) (3 point) Reduce the augmented system in part (a) to echelon form.1 0 0 30

0 1 0 −150
0 0 1 −80


(c) (2 point) Describe the set of solutions to the given system.

The unique solution is (x1, x2, x3) = (30,−150,−80).

2. (6 points) Solve the following system of linear equations

x1 + 2x2 = 1
−x1 − 4x2 + x3 = 2

2x2 + x3 = 0.

 1 2 0 1
−1 −4 1 2
0 2 1 0

 ∼
1 0 0 5/2

0 1 0 −3/4
0 0 1 3/2


so the unique solution is (x1, x2, x3) = (5/2,−3/4, 3/2).

3. (3 points) Represent the linear span of the four vectors as the range space of some matrix:

x1 =


1
2
2
4

 , x2 =


1
2
2
5

 , x3 =


−1
1
1
−2

 , x4 =


7
2
1
1

 .
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Span{x1, x2, x3, x4} = Range(A) where A =


1 1 −1 7
2 2 1 2
2 2 1 1
4 5 −2 1


4. (3 points) Compute a basis for Nul(AT )⊥ where A is the matrix

A =


1 1 −1 7
2 2 1 2
2 2 1 1
4 5 −2 1

 .
By the Fundamental Theorem of the Alternative, Nul(AT )⊥ = Range(A). A straightfor-
ward computation confirms the columns of A are linearly independent, so Nul(AT )⊥ =
Range(A) = R4.

5. Consider the matrix

A =

 2 1 −1
1 2 −1
−1 −1 2

 .
(a) (3 points) Find the eigenvalues of the matrix A. Is any eigenvalue repeated?

det(A− λI) = −λ3 + 6λ2 − 9λ+ 4 = −(λ− 1)2(λ− 4)

so eigenvalues of A are λ1 = 4, λ2 = λ3 = 1.

(b) (4 points) Find three eigenvectors u1, u2, u3 of A that are orthonormal.

Find eigenvectors ui by determining Nul(A − λiI) and use Gram-Schmidt to or-
thonormalize. There are many possibilities for u2, u3 below.

u1 =
1√
3

−1
−1
1

 , u2 =
1√
2

 1
−1
0

 , u3 =
1√
6

−1
−1
−2


(c) (1 point) State a spectral (eigenvalue) decomposition of A.

A = UΛUT where U =

 | | |
u1 u2 u3
| | |

 from above and Λ =

4 0 0
0 1 0
0 0 1


6. Recall that a function f : Rn → R is said to be differentiable at a point x ∈ Rn if there is

a vector g ∈ Rn such that

f(y) = f(x) + gT (y − x) + o(‖y − x‖) .

The vector g is called the gradient of f at x and is denoted g = ∇f(x). Note that, when
defined, the relation x 7→ ∇f(x) is a mapping from Rn to Rn, i.e. ∇f : Rn → Rn. We
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say that f is continuously differentiable at x ∈ Rn if the mapping ∇f is continuous at x.
When f is continuously differentiable at x ∈ Rn, then ∇f(x) is easily computed as the
vector of partial derivatives of f at x, i.e.

∇f(x) =


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

 .

Compute the gradient of the following functions.

(a) (2 points) f(x) = x31 + x32 − 3x1 − 15x2 + 25 on R2

∇f(x) =

(
3x21 − 3
3x22 − 15

)

∇2f(x) =

(
6x1 0
0 6x2

)

(b) (2 points) f(x) = x21 + x22 − sin(x1x2) on R2

∇f(x) =

(
2x1 − x2 cos(x1x2)
2x2 − x1 cos(x1x2)

)

∇2f(x) =

(
2 + x22 sin(x1x2) − cos(x1x2) + x1x2 sin(x1x2)

− cos(x1x2) + x1x2 sin(x1x2) 2 + x21 sin(x1x2)

)

(c) (2 points) f(x) = ‖x‖2 =
∑n

j=1 x
2
j on Rn

For each of the below, the gradient and Hessian is specified component-wise.

(∇f(x))i = 2xi

(∇2f(x))ij =

{
2 if i = j

0 if i 6= j

(d) (2 points) f(x) = e‖x‖
2

on Rn

(∇f(x))i = 2xie
‖x‖2

(∇2f(x))ij =

{
2e‖x‖

2
+ 4x2i e

‖x‖2 if i = j

4xixje
‖x‖2 if i 6= j
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(e) (2 points) f(x) = x1x2x3 · · ·xn on Rn

(∇f(x))i =
∏
j 6=i

xj

(∇2f(x))ij =

{
0 if i = j∏

k 6=i,j xk if i 6= j

(f) (2 points) f(x) = − log(x1x2x3 · · ·xn) on the set {x ∈ Rn : xi > 0 for all i =
1, . . . , n}

(∇f(x))i = −
∏

j 6=i xj∏n
i=1 xj

= − 1

xi

(∇2f(x))ij =

{
1
x2
i

if i = j

0 if i 6= j

7. (12 points) Let Rn×n denote the set of real n×n square matrices. A function f : Rn → R
is said to be twice differentiable at a point x ∈ Rn if is differentiable at x and there is a
matrix H ∈ Rn×n such that

f(y) = f(x) +∇f(x)T (y − x) + 1
2
(y − x)TH(y − x) + o(‖y − x‖2).

The matrix H is called the Hessian of f at x and is denoted ∇2f(x). Note that, when
defined, the relation x 7→ ∇2f(x) is a mapping from Rn to Rn×n, i.e. ∇2f : Rn → Rn×n.
We say that f is twice continuously differentiable at x ∈ Rn if the mapping ∇2f is
continuous at x. It can be shown that if f is twice continuously differentiable at a point
x ∈ Rn, then the matrix ∇2f(x) is symmetric, i.e. ∇2f(x) = ∇2f(x)T , in which case
∇2f(x) is the matrix of second partial derivatives of f at x:

∇2f(x) =


∂2f

∂x1∂x1
(x) ∂2f

∂x2∂x1
(x) . . . ∂2f

∂xn∂x1
(x)

∂2f
∂x1∂x2

(x) ∂2f
∂x2∂x2

(x) . . . ∂2f
∂xn∂x2

(x)
...

...
. . .

...
∂2f

∂x1∂xn
(x) ∂2f

∂x2∂xn
(x) . . . ∂2f

∂xn∂xn
(x)

 .

Compute the Hessian of the functions given in problem 6 above.

See above.
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