Reading in the supplementary text (Nonlinear Optimization): Chapter 1, Chapter
2: page 9 to top of page 10, section 2.2, Sections 3-5,8; Chapter 4: Sections 1-4.

Exercises: Do the following exercises, justifying all steps.

1. Consider the system

$$
\begin{aligned}
& 4 x_{1}-x_{3}=200 \\
& 9 x_{1}+x_{2}-x_{3}=200 \\
& 7 x_{1}-x_{2}+2 x_{3}=200 .
\end{aligned}
$$

(a) (1 point) Write the augmented matrix corresponding to this system.

$$
\left(\begin{array}{cccc}
4 & 0 & -1 & 200 \\
9 & 1 & -1 & 200 \\
7 & -1 & 2 & 200
\end{array}\right)
$$

(b) (3 point) Reduce the augmented system in part (a) to echelon form.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 30 \\
0 & 1 & 0 & -150 \\
0 & 0 & 1 & -80
\end{array}\right)
$$

(c) (2 point) Describe the set of solutions to the given system.

The unique solution is $\left(x_{1}, x_{2}, x_{3}\right)=(30,-150,-80)$.
2. (6 points) Solve the following system of linear equations

$$
\begin{aligned}
& x_{1}+2 x_{2} \quad=1 \\
& -x_{1}-4 x_{2}+x_{3}=2 \\
& 2 x_{2}+x_{3}=0 \text {. } \\
& \left(\begin{array}{cccc}
1 & 2 & 0 & 1 \\
-1 & -4 & 1 & 2 \\
0 & 2 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & 0 & 5 / 2 \\
0 & 1 & 0 & -3 / 4 \\
0 & 0 & 1 & 3 / 2
\end{array}\right)
\end{aligned}
$$

so the unique solution is $\left(x_{1}, x_{2}, x_{3}\right)=(5 / 2,-3 / 4,3 / 2)$.
3. (3 points) Represent the linear span of the four vectors as the range space of some matrix:

$$
x_{1}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
4
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
5
\end{array}\right], \quad x_{3}=\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-2
\end{array}\right], \quad x_{4}=\left[\begin{array}{l}
7 \\
2 \\
1 \\
1
\end{array}\right] .
$$

$\operatorname{Span}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=\operatorname{Range}(A)$ where $A=\left(\begin{array}{cccc}1 & 1 & -1 & 7 \\ 2 & 2 & 1 & 2 \\ 2 & 2 & 1 & 1 \\ 4 & 5 & -2 & 1\end{array}\right)$
4. (3 points) Compute a basis for $\operatorname{Nul}\left(A^{T}\right)^{\perp}$ where A is the matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & -1 & 7 \\
2 & 2 & 1 & 2 \\
2 & 2 & 1 & 1 \\
4 & 5 & -2 & 1
\end{array}\right]
$$

By the Fundamental Theorem of the Alternative, $\operatorname{Nul}\left(A^{T}\right)^{\perp}=$ Range (A). A straightforward computation confirms the columns of A are linearly independent, so $\operatorname{Nul}\left(A^{T}\right)^{\perp}=$ $\operatorname{Range}(A)=\mathbb{R}^{4}$.
5. Consider the matrix

$$
A=\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

(a) (3 points) Find the eigenvalues of the matrix A. Is any eigenvalue repeated?

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}+6 \lambda^{2}-9 \lambda+4=-(\lambda-1)^{2}(\lambda-4)
$$

so eigenvalues of A are $\lambda_{1}=4, \lambda_{2}=\lambda_{3}=1$.
(b) (4 points) Find three eigenvectors u_{1}, u_{2}, u_{3} of A that are orthonormal.

Find eigenvectors u_{i} by determining $\operatorname{Nul}\left(A-\lambda_{i} I\right)$ and use Gram-Schmidt to orthonormalize. There are many possibilities for u_{2}, u_{3} below.

$$
u_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right), \quad u_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \quad u_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
-1 \\
-1 \\
-2
\end{array}\right)
$$

(c) (1 point) State a spectral (eigenvalue) decomposition of A.

$$
A=U \Lambda U^{T} \text { where } U=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
u_{1} & u_{2} & u_{3} \\
\mid & \mid & \mid
\end{array}\right) \text { from above and } \Lambda=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

6. Recall that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be differentiable at a point $x \in \mathbb{R}^{n}$ if there is a vector $g \in \mathbb{R}^{n}$ such that

$$
f(y)=f(x)+g^{T}(y-x)+o(\|y-x\|) .
$$

The vector g is called the gradient of f at x and is denoted $g=\nabla f(x)$. Note that, when defined, the relation $x \mapsto \nabla f(x)$ is a mapping from \mathbb{R}^{n} to \mathbb{R}^{n}, i.e. $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. We
say that f is continuously differentiable at $x \in \mathbb{R}^{n}$ if the mapping ∇f is continuous at x. When f is continuously differentiable at $x \in \mathbb{R}^{n}$, then $\nabla f(x)$ is easily computed as the vector of partial derivatives of f at x, i.e.

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(x) \\
\frac{\partial f}{\partial x_{2}}(x) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(x)
\end{array}\right)
$$

Compute the gradient of the following functions.
(a) (2 points) $f(x)=x_{1}^{3}+x_{2}^{3}-3 x_{1}-15 x_{2}+25$ on \mathbb{R}^{2}

$$
\begin{aligned}
\nabla f(x) & =\binom{3 x_{1}^{2}-3}{3 x_{2}^{2}-15} \\
\nabla^{2} f(x) & =\left(\begin{array}{cc}
6 x_{1} & 0 \\
0 & 6 x_{2}
\end{array}\right)
\end{aligned}
$$

(b) (2 points) $f(x)=x_{1}^{2}+x_{2}^{2}-\sin \left(x_{1} x_{2}\right)$ on \mathbb{R}^{2}

$$
\begin{gathered}
\nabla f(x)=\binom{2 x_{1}-x_{2} \cos \left(x_{1} x_{2}\right)}{2 x_{2}-x_{1} \cos \left(x_{1} x_{2}\right)} \\
\nabla^{2} f(x)=\left(\begin{array}{cc}
2+x_{2}^{2} \sin \left(x_{1} x_{2}\right) & -\cos \left(x_{1} x_{2}\right)+x_{1} x_{2} \sin \left(x_{1} x_{2}\right) \\
-\cos \left(x_{1} x_{2}\right)+x_{1} x_{2} \sin \left(x_{1} x_{2}\right) & 2+x_{1}^{2} \sin \left(x_{1} x_{2}\right)
\end{array}\right)
\end{gathered}
$$

(c) (2 points) $f(x)=\|x\|^{2}=\sum_{j=1}^{n} x_{j}^{2}$ on \mathbb{R}^{n}

For each of the below, the gradient and Hessian is specified component-wise.

$$
\begin{gathered}
(\nabla f(x))_{i}=2 x_{i} \\
\left(\nabla^{2} f(x)\right)_{i j}= \begin{cases}2 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases}
\end{gathered}
$$

(d) (2 points) $f(x)=e^{\|x\|^{2}}$ on \mathbb{R}^{n}

$$
\begin{gathered}
(\nabla f(x))_{i}=2 x_{i} e^{\|x\|^{2}} \\
\left(\nabla^{2} f(x)\right)_{i j}= \begin{cases}2 e^{\|x\|^{2}}+4 x_{i}^{2} e^{\|x\|^{2}} & \text { if } i=j \\
4 x_{i} x_{j} e^{\|x\|^{2}} & \text { if } i \neq j\end{cases}
\end{gathered}
$$

(e) (2 points) $f(x)=x_{1} x_{2} x_{3} \cdots x_{n}$ on \mathbb{R}^{n}

$$
\begin{gathered}
(\nabla f(x))_{i}=\prod_{j \neq i} x_{j} \\
\left(\nabla^{2} f(x)\right)_{i j}= \begin{cases}0 & \text { if } i=j \\
\prod_{k \neq i, j} x_{k} & \text { if } i \neq j\end{cases}
\end{gathered}
$$

(f) (2 points) $f(x)=-\log \left(x_{1} x_{2} x_{3} \cdots x_{n}\right)$ on the set $\left\{x \in \mathbb{R}^{n}: x_{i}>0\right.$ for all $i=$ $1, \ldots, n\}$

$$
\begin{aligned}
& (\nabla f(x))_{i}=-\frac{\prod_{j \neq i} x_{j}}{\prod_{i=1}^{n} x_{j}}=-\frac{1}{x_{i}} \\
& \left(\nabla^{2} f(x)\right)_{i j}= \begin{cases}\frac{1}{x_{i}^{2}} & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases}
\end{aligned}
$$

7. (12 points) Let $\mathbb{R}^{n \times n}$ denote the set of real $n \times n$ square matrices. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be twice differentiable at a point $x \in \mathbb{R}^{n}$ if is differentiable at x and there is a matrix $H \in \mathbb{R}^{n \times n}$ such that

$$
f(y)=f(x)+\nabla f(x)^{T}(y-x)+\frac{1}{2}(y-x)^{T} H(y-x)+o\left(\|y-x\|^{2}\right)
$$

The matrix H is called the Hessian of f at x and is denoted $\nabla^{2} f(x)$. Note that, when defined, the relation $x \mapsto \nabla^{2} f(x)$ is a mapping from \mathbb{R}^{n} to $\mathbb{R}^{n \times n}$, i.e. $\nabla^{2} f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$. We say that f is twice continuously differentiable at $x \in \mathbb{R}^{n}$ if the mapping $\nabla^{2} f$ is continuous at x. It can be shown that if f is twice continuously differentiable at a point $x \in \mathbb{R}^{n}$, then the matrix $\nabla^{2} f(x)$ is symmetric, i.e. $\nabla^{2} f(x)=\nabla^{2} f(x)^{T}$, in which case $\nabla^{2} f(x)$ is the matrix of second partial derivatives of f at x :

$$
\nabla^{2} f(x)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \ldots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}(x)
\end{array}\right]
$$

Compute the Hessian of the functions given in problem 6 above.
See above.

