1. REVIEW OF MULTI-VARIABLE CALCULUS

Throughout this course we will be working with the vector space R™. For this reason we
begin with a brief review of its metric space properties

Definition 1.1 (Vector Norm). A function v : R® — R is a vector norm on R™ if the
following three properties hold.

i. (Positivity): v(z) >0V z € R" with equality iff x = 0.
ii. (Homogeneity): v(az)=|ajv(z)VzeR"aeR
iii. (Triangle inequality): v(z+y) <v(z)+v(y)Vx,yeR"

We usually denote v(z) by ||z||. Norms are convex functions.

EXAMPLE: [, norms

1
lolly = (i |wl?)r, T<p<oc
[2llee = maxizy, o |2l

— P =1,2, 00 are most important cases

ey =1 //ii\i\ |2l = 1
N

— The unit ball of a norm is a convex set.

1.1. Equivalence of Norms. All norms on R" are comparable, meaning that for any norms
|- |l, and || - ||, there exist constants «,, and 3,, satisfying

O‘p,quHq < Hpr < Bp,qunq for all z € R".

Here are some values of the constants o, , and 3, ,.

Qpg ‘w} 1 2 3
1 1 1 1
2 |n2 1 1
3 nt n_% 1

Boa  p *|1 % 3
1 1 nz n
2 [1 1 n2
3 /1 1 1
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1.2. Continuity and the Weierstrass Theorem.
— A mapping F : R" — R™ is said to be continuous at the point T if

lim || F(z)— F(z)|| =0.
|z~ —0

F is said to be continuous on a set D C R™ if F'is continuous at every point of D.
— A subset D C R" is said to be open if for every x € D there exists ¢ > 0 such that

B.(x) C D where

Be(z) ={y e R": |ly — x| <€}
— A subset D C R" is said to be closed if every point x satisfying
B(z)ND #0

for all € > 0, must be a point in D.
— A subset D C R" is said to be bounded if there exists m > 0 such that

||| < m for all z € D.

(Notice: the choice of the norm is irrelevant in the definition.)
— A subset D C R" is said to be compact, if it is closed and bounded.
— A point z € R" is said to be a cluster point of the set D C R™ if

(Be(z) \ {z}) N D #0
for every € > 0.
For example, for the set D := (0, 1] U {2}, the set of cluster points is the set [0, 1].

Theorem 1.1 (Weierstrass Compactness Theorem). A set D C R™ is compact if and only
if every infinite subset of D has a cluster point in D.

Next, we recall the notions of the supremum and infimum of a function. To this end,
consider a function f: R® — R and a set D C R". Define the set of upper bounds

U={reR: f(z) <rforall z € D}.

One can prove that U is a closed subinterval of the real line, namely we may write U =
[, +00) for some a. (Note « can be finite or infinite.) The value « is called the supremum
of f on D. Intuitively this quantity is the “least upper bound” of f on D. Note that for any
r > «, there cannot exist a point € D satisfying r = f(z) (Why?). On the other hand,
when there exists some point = in D satisfying a = f(&), we call « the mazimal value of f
on D, and we say that the maximum of f on D is attained at . Moreover, this point Z is
called a maximizer of f on D.

The definition of the infimum of f on D as the “greatest lower bound” is entirely analogous.
Namely the set of lower bounds

L={reR: f(zx)>rforal ze D}

can be shown to be an interval (—oo, 8] for some 8. This value j is called the infimum of f
on D. Minimal values, minimizers, and attainment of the minimum are defined analogously.
The following theorem, which we will use extensively, establishes a connection between con-
tinuous functions on compact sets and attainment of the minimum and the maximum.
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Theorem 1.2 (Weierstrass Extreme Value Theorem). Every continuous function on a com-
pact set attains its extreme values (maximum and minimum) on that set.

1.3. Dual Norms. Let || - || be a given norm on R™ with associated closed unit ball B. For
each x € R" define

. = Ty <1}
[Edl igé%zg{x vyl <1}

Since the transformation y + 27y is continuous (in fact, linear) and B is compact (can
you prove this?), Weierstrass’s Theorem says that the maximum in the definition of ||z||.
is attained. Thus, in particular, the function x — ||z||« is well defined and finite-valued.
Indeed, the mapping defines a norm on R"™. This norm || - ||, is said to be the norm dual to
the norm || - ||. Thus, every norm has a norm dual to it.

We now show that the mapping x — ||z||, is a norm.

(a) It is easily seen that ||z|. = 0 if z = 0. On the other hand, if = # 0, then

z 13
]l = max{z"y : [ly] <1} > 2" (—) B >0,
|| |

(b) From part (a), we have [|0 - z|l. = 0 = 0 - ||z||.. Next suppose a € R with a # 0.

Then
laall. = max{sT(ay): Iyl <1}, (set = = ay)
= max{f’fTZ 12> |2 = izl = | } (Set w = ﬁ)
— max{a" (Jajw) : 12 [Jul]}
= laf[|z]].

In order to establish the triangle inequality, we make use of the following elementary, but
very useful, fact.

FacT: For a function f: R"™ — R and sets C' C D C R", it holds:

sup f(x) < sup f(z).
zeC zeD

That is, the supremum over a larger set must be larger. Similarly, the infimum over a larger
set must be smaller.

(©) lle+zl. = max{z"y+2Ty: |yl <1}

<1
= max{xTyl + 2Ty, Hg;” <1 0= yz}
(max over a larger set)
= <max{z'yi + 2"y nll < 1, [|gefl < 1}

=l + 1=l

Facrs:

() «"y < [lo] ly]. (apply defnition)
(i) (lall). = llally where 1+ 3= 1,1 < p < oc



(iii) Holder’s Inequality: |z7y| < ||z, |lyll,
1 1
SR |
p g

(iv) Cauchy-Schwartz Inequality:

|2yl < ll=ll2llyll2

1.4. Operator Norms. For the a matrix A € R™*", the p-operator norm is given by

[Allp := max{[|Az]}, - [l]l, <1}

ExamMpPLE: [|A|2 = max{||Az|s: [|z|2 < 1}
1Allo = max{[|Az]joo : [|zfloc <1}
= max > j=1laij|, max row form
[All = max{|[ Az, : ]l <1}
= max y_., |a;], max column sum
1<j<n

Fact: [|Az|l, < [[Allp]lz[l,-
(a) [|A]| > 0 with equality iff A= 0.
(b) [leA]l = max{[jeAz|| : lz|| <1}
= max{|al || Az : [[z]] <1} = |af [|A]

(c) A+ B max{||Az + Bz| : |[z]] <1} < max{[|Az|| + || Bz| - |[z]] <1}
max{||Azy || + || Bxal| - 21 = a2, [[21]| < 1, ||| < 1}
max{[| Az, [| + || Bzaf| « [lz1[] < 1, [[zof <1}

IAll + 1Bl

[Nl

1.4.1. Condition number. The condition number of a matrix A € R™*" is defined by

_ J IAIATH if A7 exists
wA) = { 00 otherwise

FAcT: [Error estimates in the solution of linear equations| If Ax; = b and Azy = b+ e, then

a1 — ] el
s =l g Nl
il 1o
Proof. Ibl] = [z | < |A] ]} = 727 < 141, 50
s —aoll Al ol
< DA A= Ay = ) < AN AL Ay — Ads
el < ol L oy A — Ave
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1.5. The Frobenius Norm. There is one further norm for matrices that is very useful. It
is called the Frobenius norm.

Observe that we can identify R™*™ with R(™ by simply stacking the columns of a matrix
one on top of the other to create a very long vector in R(™ . The Frobenius norm is then
the 2-norm of this vector. It can be verified that

||A||% = tr A2,
1.6. Review of Differentiation.
1) Let F: R" — R™ and let z,d € R™. If the limit
lim F(x +td) — F(z)
tl0 t

exists, it is called the directional derivative of F' at x in the direction d. If this limit
exists for all d € R and is linear in the d argument, meaning

F'(z;ady + fdp) = aF'(x;dy) + BF' (x;ds),
then F'is said to be Gateaux differentiable at x.
2) Let F': R" — R™ and let « € R". If there exists a matrix J € R™*" such that
1F'(y) = (F(z) + Iy —2)ll _
ly=z(-0 ly — =] ’

then F'is said to be Fréchet differentiable at x and J is said to be its Fréchet derivative.
We denote J by J = F'(z).

=: [ (x;d)

FAcCTs:
(i) If F'(z) exists, it is unique.
(ii) If F'(x) exists, then F'(x;d) exists for all d and
F'(z;d) = F'(z)d.
(iii) If F'(x) exists, then F' is continuous at .
(iv) (Matrix Representation)

Suppose F'(z) exists for all  near T and that the mapping « — F’(x) is continuous
at T, meaning as usual

lim |[F"(z) = F'(z)|| = 0,

lz—z[|—0

then the partial derivatives 0F;/0x; exist for each i = 1,...,m, j = 1,...,n and
with respect to the standard basis the linear operator F’(%) has the representation

om ok .. ok T

awl 8:22 amn

oF,  OF. OF:

—— or, 0B ... b - or1T
: Iz;

OF, .. ... OFnm

dx1 OTn
where each partial derivative is evaluated at T = (Zy,...,Z,)’. This matrix is called

the Jacobian matriz for F at T.
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NotATION: For a function f : R” — R and the vector f'(z) := [g—ill, cee gﬁ;] we write
Vf(z) = f(z)".
(v) If F: R™ — R™ has continuous partials 0F;/0z; on an open set D C R", then F
is differentiable on D. Moreover, in the standard basis the matrix representation for
F'(zx) is the Jacobian of F' at .
(vi) (Chain Rule) Let F' : A C R™ — R* be differentiable on the open set A and let
G : B ¢ R¥ — R" be differentiable on the open set B. If F(A) C B, then the
composite function G o F' is differentiable on A and

(G o F)'(x0) = G'(F(x0)) o F'(wo).

REMARKS: Let F': R" — R™ be differentiable. If L(R™ R™) denotes the set of linear maps
from R™ to R™, then
F':R" — L(R",R™).
(v) The Mean Value Theorem:
(a) If f: R — R is differentiable, then for every z,y € R there exists z between x
and y such that

fly) = f@) + () — ).
(b) If f:R™ — R is differentiable, then for every x,y € R there is a z € [z, y] such
that
fly) = f@) + V()" (y — ).
(c¢) If FF:R™ — R™ continuously differentiable, then for every z,y € R
1E(y) — F(x)] <[ sup O EET
z€[x,y

PROOF OF (b): Set ¢(t) = f(x + t(y — x)). Then, by the chain rule, ¢'(t) = V f(x + t(y —
2))T(y — ) so that ¢ is differentiable. Moreover, ¢ : R — R. Thus, by (a), there exists

t € (0,1) such that
p(1) = ¢(0) + ¢'(£)(1 - 0),
or equivalently,
fly) = f(2) + V()" (y - 2)
where z = x + t(y — ). |

1.6.1. The Implicit Function Theorem. Let F : R"™™ — R™ be continuously differentiable
on an open set F C R™™™. Further suppose that there is a point (Z,7) € R"™ at which
F(z,y) = 0. If V.F(Z,7) is invertable, then there exist open sets U C R"*™ and W C R™,
with (Z,7y) € U and y € W, having the following property:

To every y € W corresponds a unique € R"™ such that

(x,y) e U and F(z,y)=0.

Moreover, if z is defined to be G(y), then G is a continuously differentiable mapping of W
into R" satisfying

Gy) =z, F(Gy).y)=0YyeW, and G'(y) =—(V.F(z,9) 'V,F(z,79) .
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1.6.2. Some facts about the Second Derivative. Let f : R™ — R be a differentiable function.
Then Vf is a mapping from R™ to R". The second derivative of f is by definition the first
derivative of the gradient mapping x — V f(z), if it exists, that is the second derivative of
[ at z is the mapping V2f(x) := V[V f](x).
(i) If V2f(z) exists and is continuous at x, then with respect to the standard basis, it is
given as the matrix of second partial derivatives:

02 f
2 _
Vf0) = |5 o)
Moreover, =24 — = 2L for all 4,5 = 1,...,n. The matrix V2f(x) is called the

? Ox;0x; O0x;0x;
Hessian of f at x. It is a symmetric matrix.
(ii) Second-Order Taylor Theorem:
If f:R" — R is twice continuously differentiable on an open set containing the
interval [x,y], then there is a point z € [z, y] such that

F) = F() + V@l — ) + 5y~ 0 S )y~ )

We also obtain

1 (y) = (f(2) + V() (y —2))] < %IISE —y|I* sup [|V*f(2)].

2€[z,y]

1.6.3. Integration. Let f: R™ — R be differentiable and set ¢(t) := f(z + t(y — x)) so that
¢ :R — R. Then

fo) = f@) = o(1) = (0) = fy ¢/(t) dt

= Jo Vi@ +tly—2)"(y—x)dt
Similarly, for a mapping £ : R — R™, we have
[} VE (@ +ty — )" (y —x)dt
Fly) - Fla) = z
Jy VB (2 +t(y — )" (y — x)dt

= fol VF(x+tly—x))(y—x)dt

1.6.4. More Facts about Continuity. Let F : R" — R™.

— We say that F' is continuous relative to a set D C R™ if for every x € D and € > 0
there exists a d(x, €) > 0 such that

|F(y) — F(z)|| < e whenever |y — x| < d(zx,e) and ye€ D.

— We say that F'is uniformly continuous on D C R™ if for every € > 0 there exists
d(e) > 0 such that

|F(y) — F(z)]| < e whenever ||y —z|| < d(e) and z,y € D.

FAct: If I is continuous on a compact set D C R”, then F' is uniformly continuous on D.



— We say that F' is Lipschitz continuous on a set D C R™ if there exists a constant
K > 0 such that

[F(z) = Fy)ll < K[z -y
for all x,y € D.

FAcT: Lipschitz continuity implies uniform continuity.
Proof. Set § = ¢/ K. O

EXAMPLES:

(1) 4(x) = 27! is continuous on (0,1), but it is not uniformly continuous on (0,1).
(2) f(z) = y/x is uniformly continuous on [0, 1], but it is not Lipschitz continuous on
[0, 1].

FAct: If VF exists and is continuous on a compact convex set D C R™, then F' is Lipschitz
continuous on D.

Proof. Mean value Theorem:

[1F(z) = F(y)l < (sup [[VF()D]z -yl

z€[z,y]

Apply Weierstrass Compactness Theorem to VF'. O

Lipschitz continuity is almost but not quite a differentiability hypothesis. The Lipschitz
constant provides bounds on rate of change.
K slope k

< slope (-K)

1.6.5. Quadratic Bound Lemma. Let F' : R™ — R™ be such that VF' is Lipschitz continuous
on the convex set D C R™. Then

1E(y) = (F(z) + VE(2)(y — 2))l| < %Hy —z|”

for all z,y € D where K is a Lipschitz constant for VF on D.



Proof. F(y) — F(z) = VF(z)(y —x) = foi VE(x+t(y —x))(y — x)dt = VF(z)(y — x)
= [ [VF(@@+ty — ) = VF(2)|(y — z)dt

1E(y) = (F(z) + VE(x)(y — 2))| | Jo [VE(z +t(y — 2)) = VF(2)](y — z)dt|

< foi I(VE(@ +t(y —a) = VE(2))(y — 2)||dt
< o IVE(z+t(y —2)) = VE@)Il ly — «]|dt
< Jp ol

O

1.6.6. Some Facts about Symmetric Matrices. Let H € R™*" be symmetric, i.e. HT = H

(1) There exists an orthonormal basis of eigen-vectors for H,i.e. if \; > Xy > -+ > ), are
the n eigenvalues of H (not necessarily distinct), then there exist vectors ¢, ..., ¢,
such that \;¢; = Hgq; i = 1,...,n with ¢lq; = d;;. Equivalently, there exists an
orthogonal transformation Q = [qy, ..., ¢,] (QTQ = I) such that

H = QAQT

where A = diag[Ay, ..., \,].
(2) H € R™™ is positive semi-definite, i.e.

2THx >0 forall z € R™,

if and only if all the eigenvalues of H are nonnegative.



