
MATH 408 MIDTERM EXAM OUTLINE

The midterm exam will consist of two parts: (I) Linear Least Squares and (II) Quadratic Optimization.
In each part, the first question concerns definitions, theorems, and proofs, and the remaining questions are
computational. This format is very much like the quizzes. More detailed descriptions of the questions are
given below. This is then followed by a list of sample questions.

I. Linear Least Squares

1. Theory Question: For this question you will need to review all of the vocabulary words as well as
the theorems for Linear Least Squares. Central focus is on the role of orthogonal projections.

2. Computational questions: You may be asked to compute the solution to a linear system of equations
(such as the normal equations), use a given QR factorization to solve the normal equations, solve
a linear least squares problem, solve a polynomial fitting problem, and/or compute an orthogonal
projection onto a subspace.

II. Quadratic Optimization

4. Theory Question: For this question you will need to review all of the vocabulary words as well as
the theorems in Chapter 4 that were covered in class.

5. Computation: You may be asked to compute an eigenvalue decomposition, check if a matrix is
positive definite, and/or compute the solution set to a quadratic optimization problem possibly
with constraints.

Sample Questions
(I) Linear Least Squares

Question 1:
Let A ∈ Rm×n and b ∈ Rm, and consider the linear least squares problem

LLS min
1

2
‖Ax− b‖22 .

a. Show that the matrix ATA is always positive semi-definite. Provide necessary and sufficient condition
on A under which ATA is positive definite.

b. Show that Null(ATA) = Nul(A) and Ran(ATA) = Ran(AT ).

c. Show using the normal equations that LLS always has a solution.

d. State and prove a necessary and sufficient condition on the matrix A ∈ Rm×n under which LLS has a
unique global optimal solution.

e. Decribe the QR factorization of A and show how it can be used to construct a solution to LLS.

f. If Null(A) = {0}, show that (ATA)−1 is well defined and that P = A(ATA)−1AT is the orthogonal
projection onto Ran(A) and that

1

2
‖P (b)− b‖22 = min

1

2
‖Ax− b‖22 .

g. Let A ∈ Rm×n be such that Ran(A) = Rm. Show that the point x̂ := AT (AAT )−1b is the unique
solution to the problem

min
1

2
‖x‖22 subject to Ax = b .



Question 2:

(A) Consider the matrix

A =


1 1 1
1 1 0
1 0 0
1 0 1

 .

a. Compute the orthogonal projection onto Ran(A).

b. Compute the orthogonal projection onto Null(AT ).

(B) Consider the matrix

A =


1 −1 0
1 1 2
1 −1 0
1 1 2

 .

a. Compute the orthogonal projection onto Ran(A).

b. Compute the orthogonal projection onto Null(AT ).

Question 3:

(A) Consider the function

f(x1, x2, x3) =
1

2
[(2x1 − 4)2 + (x1 − x2)

2 + (3x2 + x3)
2].

(a) Write this function in the form of the objective function for a linear least squares problem by
specifying the matrix A and the vector b.

(b) Describe the solution set of this linear least squares problem.

(B) Find the quadratic polynomial p(t) = x0+x1t+x2t
2 that best fits the following data in the least-squares

sense:
t −2 −1 0 1 2

y 2 −10 0 2 1
.

(C) Consider the problem LLS with

A =


1 −1 0
1 1 2
1 −1 0
1 1 2

 and b =


1
1
1
0

 .

(a) What are the normal equations for this A and b.

(b) Solve the normal equations to obtain a solution to the problem LLS for this A and b.

(c) Compute the orthogonal projection onto the range of A.

(d) Describe how you would use a QR factorization AP = Q[R1 R2] to solve the LLS for this A and b.

(e) If x̄ solves LLS for this A and b, what is Ax̄− b?

(II) Quadratic Optimization

Question 4:
Consider the function

f(x) =
1

2
xTHx + vTx,

where H ∈ Rn×n is symmetric and v ∈ Rn.



1. What is the eigenvalue decomposition of H?

2. Give necessary and sufficient conditions on H and v for which there exists a solution to the problem
minx∈Rn f(x). Justify your answer.

3. If H is positive definite, show that there is a nonsingular matrix B such that H = BTB.

4. Let x̂ ∈ Rn and S be a subspace of Rn. Give necessary and sufficient conditions on H and v for which
there exists a solution to the problem

min
x∈x̂+S

f(x) .

5. Show that every local solution to the problem minx∈Rn f(x) is necessarily a global solution.

Question 5:

(A) Compute the eigenvalue decomposition of the following matrices.

(a) H =

2 1 0
1 2 1
0 1 2

 (b) H =

3 0 1
0 1 0
1 0 3



(c) H =


2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

 (d) H =


5 −1 −1 1
−1 4 2 −1
−1 2 4 −1
1 −1 −1 5


(B) For each of the matrices H and vectors v below determine the optimal value of the quadratic optimization

problem. If an optimal solution exists, compute the complete set of optimal solutions.

a.

H =

2 1 0
1 2 1
0 1 2

 and v =

3
1
1

 .

b.

H =

2 1 0
1 2 1
0 1 −2

 and v =

3
1
1

 .

c.

H =

 5 2 −1
2 1 −1
−1 −1 2

 and v =

3
1
0

 .

(B) Consider the matrix H ∈ R3×3 and vector v ∈ R3 given by

H =

1 4 1
4 20 2
1 2 2

 and v =

1
0
1

 .

Does there exists a vector u ∈ R3 such that f(tu)
t↑∞−→ −∞? If yes, construct u.



(C) Consider the linearly constrained quadratic optimization problem

Q(H, v,A, b) minimize
1

2
xTHx + vTx

subject to Ax = b ,

where H, A, v, and b are given by

H =

1 1 0
1 2 1
0 1 3

 , v = (1, 1, 1)T , b = (4, 2)T , and A =

[
1 2 1
1 0 1

]
.

a. Compute a basis for the null space of A.

b. Solve the problem Q(H, v,A, b).


