MATH 408 MIDTERM GUIDE SOLUTIONS OUTLINE

Sample Questions
(I) Linear Least Squares

Question 1:
Let A € R™*™ and b € R™, and consider the linear least squares problem

1
LLS min 5”/11‘71)”% .

a. Show that the matrix AT A is always positive semi-definite and provide necessary and sufficient condition
on A under which AT A is positive definite.
Solution

vT AT Ax = ||Az||3 > 0 Vo € R" so AT A is always positive semi-definite. AT A is positive definite if and
only if 0 < 27 AT Az = ||Az||3 Vo € R" \ {0}, or equivalently, Nul(A4) = {0}.

b. Show that Nul(AT A) = Nul(A4) and Ran(AT A) = Ran(A7T).

Solution

The inclusion Nul(A4) C Nul(AT A) is trivial. Conversely, equality AT Az = 0 implies 27 AT Az = 0, i.e.
|Az||3 = 0, and hence Az = 0. This establishes Nul(AT A) = Nul(4). Finally, an application of the
Theorem of the alternative implies Ran(A” A) = Ran(A7T).

c. Show using the normal equations that £LLS always has a solution.
Solution
By part b. the normal equations A” Az = ATb admits a solution. Solutions of the normal equations are
exactly the solutions of the LLS.

d. State and prove a necessary and sufficient condition on the matrix A € R™*"™ under which £LLS has a
unique global optimal solution.
Solution
Nul(A) = {0}.

e. Decribe the QR factorization of A and show how it can be used to construct a solution to LLS.

Solution

Chaper 3, section 5.2.

f. If Nul(A) = {0}, show that (AT A)~! is well defined and that P = A(ATA)"1AT is the orthogonal
projection onto Ran(A) and that

1 1
5I1P(®) = bl = min S[|Az —b]3 .

Solution
By part b), Nul(AT A) = Nul(A4) = {0}, and hence AT A is invertible.

The claim about the orthogonal projection is from Theorem 3.1 from Chapter 3 and the paragraph after
it.



g. Let A € R™*" be such that Ran(A) = R™. Show that the point # := AT(AAT)~1b is the unique
solution to the problem

1
mlniHacH% subject to Az =1b.

Solution

Theorem 4.1 from Chapter 3.

Question 2:

(A) Consider the matrix

— = =
O O ==
_ o O =

a. Compute the orthogonal projection onto Ran(A).
Solution: Notice Nul(A) = {0}. Hence by part f., we have Pran(a) = A(ATA)~TAT. A computa-

tion shows
3 1 -1 1
111 3 1 -1
Prany =711 1 3
1 -1 1 3

provided you can compute (ATA)*l. On an exam, I would tell you what the inverse is, so you
would not have to compute it by hand.

b. Compute the orthogonal projection onto Null(AT).

Solution: Since Null(AT) = Ran(A)*, the projection onto Null(AT) is just I — Pran(a), where
Pran(a) s given above:
1 -1 1 -1

1|-1 1 -1 1
I=FPra) =311 1 1 1
-1 1 -1 1
(B) Consider the matrix
1 -1 0
1 1 2
4= 1 -1 0
1 1 2

a. Compute the orthogonal projection onto Ran(A).
Solution: Observe Nul(A) # {0}. Define the matriz

A=

e
|
—



Observe Ran(A) = Ran(A) and Nul(A) = {0}. Hence the projection onto Ran(A) equals A(AT A)~1 AT,
Then a computation shows
1/2 0 1/2 0
b o 12 0 172
Ran(4) = |1/2 0 1/2 0
0 1/2 0 1/2

b. Compute the orthogonal projection onto Null(AT).

Solution:
Nul(AT) = Ran(4)*.

1 1
19 -1 0
o0 1 0 -}
PNulary = 1= PRany = | 1 g L g
o -3 0 3

Question 3:

A Consider the function

flo1,2,23) = 3120 — 42+ (@1 — 22)? + (302 + 2]

(a) Write this function in the form of the objective function for a linear least squares problem by
specifying the matrix A and the vector b.

Solution:
2 0 0 4
A=11 -1 0|,b=10
0 3 1 0

(b) Describe the solution set of this linear least squares problem.

Solution:
(xl, 9, afg) = (2, 2, —6).

(B) Find the quadratic polynomial p(t) = xq+z1t+x2t? that best fits the following data in the least-squares
sense:

t|-2 -1 0 1 2
y| 2 -10 0 2 1
Solution: Write it as an LLS problem where
1 -2 4 2
1 -1 1 —10
A = |1 0 0 ,b == 0 )
1 1 1 2
1 2 4 1
and solving the LLS gives us (zg, 21, z2) = (—3,1,1).
(C) Consider the problem LLS with
1 -1 0 1
1 1 2 1
A= 1 ~1 0 and b= 1
1 1 2 0



(a) What are the normal equations for this A and b.

Solution: The normal equations are AT Ax = ATb (see Theorem 2.1 on page 26 of the notes),

where
3

4 0 4
ATA=10 4 4| and ATo=|-1
4 4 8 2

(b) Solve the normal equations to obtain a solution to the problem LLS for this A and b.
Solution: The set of all solutions to the normal equations are

3 1
z=—-|-1] + ¢t 1 teR.
0 -1

(c) Compute the orthogonal projection onto the range of A.
Solution:
See Question 2(B) (a).

(d) Use the recipe
AP = Q[R1 Rz] the general reduced QR factorization

b= Q' a matrix-vector product

w1 = Rflls a back solve

_ R{'b :
r=P 0 a matrix-vector product.

to solve LLS for this A and b.
Solution: See discussion on page 34 of the notes.

(e) If z solves LLS for this A and b, what is Az — b?
Solution:

1
AT — b= —
z—0b 5

(IT) Quadratic Optimization

Question 4:
Consider the function

1
f($) = §$TH$ + UTx7

where H € R™*"™ is symmetric and v € R™.

1. What is the eigenvalue decomposition of H?
Solution: Theorem 1.1 from Chapter 4.

2. Give necessary and sufficient conditions on H and v for which there exists a solution to the problem
mingegrn f(z). Justify your answer.

Solution: Theorem 2.1 from Chapter 4.



3. If H is positive definite, show that there is a nonsingular matrix B such that Q = BT B.
Solution:
Consider an eigenvalue decomposition of H = UAUT, where A = diag{\1,---,\,} where \; are the
eigenvalues of H. Since H is positive definite, we have \; > 0. Set Az = diag{)\%,--- ,)\é} and
B = D3UT, then H = BT B, with B nonsingular.
Solution: Those where H is positive semidefinite and the system Hx 4+ v = 0 is solvable.
4. Let £ € R™ and S be a subspace of R”. Give necessary and sufficient conditions on ¢ and ¢ for which
there exists a solution to the problem
i)
Solution:

Theorem 3.1 from Chapter 4.

5. Show that every local solution to the problem mingcgn f(z) is necessarily a global solution.
Solution:

Theorem 2.1 from Chapter 4. I won’t ask you this on the exam.
Question 5:

(A) Compute the eigenvalue decomposition of the following matrices.

2 1 0 301
(@H=|1 21 b)H=10 1 0
0 1 2 10 3
2 0 1 0 5 -1 -1 1
02 0 1 1 4 2 -1
@H=11 9 5 ¢ (H=\| 1 5 4
01 0 2 1 -1 -1 5
Solution:
H=UDUT,
(a)
! I R
U=|o0 ¥ 2|, D=[02+V2 0
2 1 _
—§%§ 0 0 242
) V22
2 2
¥2o_¥2 o 4 0 0
U=|0 0 1|,D=1{0 2 0
V2ooV2 0 01
2 2
(c)
0{—‘?&? 1000
2 2
v |2 0 ¥ 0| ,_|0100
0 @0@’ 00 30
V2 0 V2 g 000 3
2 2



(lfé—‘fl 20 0 0
2 1 1
o =% - 0 | {0800
£ - o P00
! 5 000 4
0o i ¥ 0

(B) For each of the matrices H and vectors v below determine the optimal value in Q. If an optimal solution
exists, compute the complete set of optimal solutions.

2 1 0 3
H=1|1 2 1 and v= |1
01 2 1

Solution:

The eigenvalues are 2,2 + /2 so H is positive definite. Therefore the unique optimal solution is
given by —H v = (-2,1,-1)T.

b.
2 1 0 3
H=1]1 2 1 and v= |1
01 -2 1
Solution:
The characteristic polynomial is p(A) = det(H — AI) = A3 — 2A? — 6\ + 8. Sketching the graph
shows one negative and two positive eigenvalues. Hence H is indefinite so that the optimal value
is —o0.
c.
5 2 -1 3
H=|2 1 -1 and v = |1
-1 -1 2 0
Solution:

The characteristic polynomial is p(\) = det(H —AI) = A[\2—8\+11] whose roots are A = 0, 44+/5.
Hence H is positive semi-definite so that the set of all possible optimal solutions is the set of
solutions to the equation Hx 4+ v = 0 which is

1 1
r=|-1| + t| -3 Vtel.
0 -1

(B) Consider the matrix H € R3*3 and vector v € R? given by
4

1 1 1
H=14 20 2 and v= |0
1 2 2 1

Does there exists a vector u € R? such that f(tu) 1% 00?1 yes, construct u.

Solution:

The eigenvalues show that H is positive semi-definite with one zero eigenvalue. But the system Hx + v
is inconsistent, so no optimal solution exists. The vector u = (—6,1,2)7 lies in the null-space of H, and
f(tu) = —4t. Hence as t T oo, f(tu) | —oo.



(C) Consider the linearly constrained quadratic optimization problem
e . 1 T T
Q(H,g,A,b) minimize 5z Hx+v'x
subject to Ax =1b,

where H, A, v, and b are given by
110
H=|1 2 1|,v=(1,1,1)T, b=(4,2)T, and A:[
01 3

a. Compute a basis for the null space of A.
Solution: A basis of Nul(4) is (1,0, —1)7.
b. Solve the problem Q(H, g, A,b).
Solution: Recall that the solution must be of the form

1 1
r=|1]1+¢t| O
1 -1

since the vector (1,1,1)7 solves Az = b and the vector (1,0, —1) spans the null space of A. Hence
this is just a one dimensional problem in ¢ which is solved by taking t = %



