
MATH 408 MIDTERM GUIDE SOLUTIONS OUTLINE

Sample Questions
(I) Linear Least Squares

Question 1:
Let A ∈ Rm×n and b ∈ Rm, and consider the linear least squares problem

LLS min
1

2
‖Ax− b‖22 .

a. Show that the matrix ATA is always positive semi-definite and provide necessary and sufficient condition
on A under which ATA is positive definite.

Solution

xTATAx = ‖Ax‖22 ≥ 0 ∀x ∈ Rn so ATA is always positive semi-definite. ATA is positive definite if and
only if 0 < xTATAx = ‖Ax‖22 ∀x ∈ Rn \ {0}, or equivalently, Nul(A) = {0}.

b. Show that Nul(ATA) = Nul(A) and Ran(ATA) = Ran(AT ).

Solution

The inclusion Nul(A) ⊂ Nul(ATA) is trivial. Conversely, equality ATAx = 0 implies xTATAx = 0, i.e.
‖Ax‖22 = 0, and hence Ax = 0. This establishes Nul(ATA) = Nul(A). Finally, an application of the
Theorem of the alternative implies Ran(ATA) = Ran(AT ).

c. Show using the normal equations that LLS always has a solution.

Solution

By part b. the normal equations ATAx = AT b admits a solution. Solutions of the normal equations are
exactly the solutions of the LLS.

d. State and prove a necessary and sufficient condition on the matrix A ∈ Rm×n under which LLS has a
unique global optimal solution.

Solution

Nul(A) = {0}.

e. Decribe the QR factorization of A and show how it can be used to construct a solution to LLS.

Solution

Chaper 3, section 5.2.

f. If Nul(A) = {0}, show that (ATA)−1 is well defined and that P = A(ATA)−1AT is the orthogonal
projection onto Ran(A) and that

1

2
‖P (b)− b‖22 = min

x∈Rn

1

2
‖Ax− b‖22 .

Solution

By part b), Nul(ATA) = Nul(A) = {0}, and hence ATA is invertible.

The claim about the orthogonal projection is from Theorem 3.1 from Chapter 3 and the paragraph after
it.
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g. Let A ∈ Rm×n be such that Ran(A) = Rm. Show that the point x̂ := AT (AAT )−1b is the unique
solution to the problem

min
1

2
‖x‖22 subject to Ax = b .

Solution

Theorem 4.1 from Chapter 3.

Question 2:

(A) Consider the matrix

A =


1 1 1
1 1 0
1 0 0
1 0 1

 .
a. Compute the orthogonal projection onto Ran(A).

Solution: Notice Nul(A) = {0}. Hence by part f., we have PRan(A) = A(ATA)−1AT . A computa-
tion shows

PRan(A) =
1

4


3 1 −1 1
1 3 1 −1
−1 1 3 1
1 −1 1 3

 .
provided you can compute (ATA)−1. On an exam, I would tell you what the inverse is, so you
would not have to compute it by hand.

b. Compute the orthogonal projection onto Null(AT ).

Solution: Since Null(AT ) = Ran(A)⊥, the projection onto Null(AT ) is just I − PRan(A), where
PRan(A) is given above:

I − PRan(A) =
1

4


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 .

(B) Consider the matrix

A =


1 −1 0
1 1 2
1 −1 0
1 1 2

 .
a. Compute the orthogonal projection onto Ran(A).

Solution: Observe Nul(A) 6= {0}. Define the matrix

Â :=


1 −1
1 1
1 −1
1 1

 .
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Observe Ran(A) = Ran(Â) and Nul(A) = {0}. Hence the projection onto Ran(A) equals Â(ÂT Â)−1ÂT .
Then a computation shows

PRan(A) =


1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2

 .

b. Compute the orthogonal projection onto Null(AT ).

Solution:

Nul(AT ) = Ran(A)⊥.

PNul(AT ) = I − PRan(A) =


1
2 0 −1

2 0
0 1

2 0 −1
2

−1
2 0 1

2 0
0 −1

2 0 1
2


Question 3:

A Consider the function

f(x1, x2, x3) =
1

2
[(2x1 − 4)2 + (x1 − x2)2 + (3x2 + x3)

2].

(a) Write this function in the form of the objective function for a linear least squares problem by
specifying the matrix A and the vector b.

Solution:

A =

2 0 0
1 −1 0
0 3 1

 , b =

4
0
0


(b) Describe the solution set of this linear least squares problem.

Solution:

(x1, x2, x3) = (2, 2,−6).

(B) Find the quadratic polynomial p(t) = x0+x1t+x2t
2 that best fits the following data in the least-squares

sense:
t −2 −1 0 1 2

y 2 −10 0 2 1
.

Solution: Write it as an LLS problem where

A =


1 −2 4
1 −1 1
1 0 0
1 1 1
1 2 4

 , b =


2
−10

0
2
1

 ,
and solving the LLS gives us (x0, x1, x2) = (−3, 1, 1).

(C) Consider the problem LLS with

A =


1 −1 0
1 1 2
1 −1 0
1 1 2

 and b =


1
1
1
0

 .
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(a) What are the normal equations for this A and b.

Solution: The normal equations are ATAx = AT b (see Theorem 2.1 on page 26 of the notes),
where

ATA =

4 0 4
0 4 4
4 4 8

 and AT b =

 3
−1
2

 .

(b) Solve the normal equations to obtain a solution to the problem LLS for this A and b.

Solution: The set of all solutions to the normal equations are

x =
1

4

 3
−1
0

 + t

 1
1
−1

 t ∈ R .

(c) Compute the orthogonal projection onto the range of A.

Solution:

See Question 2(B) (a).

(d) Use the recipe
AP = Q[R1 R2] the general reduced QR factorization

b̂ = QT b a matrix-vector product

w̄1 = R−11 b̂ a back solve

x̄ = P

[
R−11 b̂

0

]
a matrix-vector product.

to solve LLS for this A and b.

Solution: See discussion on page 34 of the notes.

(e) If x̄ solves LLS for this A and b, what is Ax̄− b?
Solution:

Ax̄− b =
1

2


0
−1
0
1

 .

(II) Quadratic Optimization

Question 4:
Consider the function

f(x) =
1

2
xTHx+ vTx,

where H ∈ Rn×n is symmetric and v ∈ Rm.

1. What is the eigenvalue decomposition of H?

Solution: Theorem 1.1 from Chapter 4.

2. Give necessary and sufficient conditions on H and v for which there exists a solution to the problem
minx∈Rn f(x). Justify your answer.

Solution: Theorem 2.1 from Chapter 4.
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3. If H is positive definite, show that there is a nonsingular matrix B such that Q = BTB.

Solution:

Consider an eigenvalue decomposition of H = UΛUT , where Λ = diag{λ1, · · · , λn} where λi are the

eigenvalues of H. Since H is positive definite, we have λi > 0. Set Λ
1
2 = diag{λ

1
2
1 , · · · , λ

1
2
n} and

B = D
1
2UT , then H = BTB, with B nonsingular.

Solution: Those where H is positive semidefinite and the system Hx+ v = 0 is solvable.

4. Let x̂ ∈ Rn and S be a subspace of Rn. Give necessary and sufficient conditions on Q and c for which
there exists a solution to the problem

min
x∈x̂+S

f(x) .

Solution:

Theorem 3.1 from Chapter 4.

5. Show that every local solution to the problem minx∈Rn f(x) is necessarily a global solution.

Solution:

Theorem 2.1 from Chapter 4. I won’t ask you this on the exam.

Question 5:

(A) Compute the eigenvalue decomposition of the following matrices.

(a) H =

2 1 0
1 2 1
0 1 2

 (b) H =

3 0 1
0 1 0
1 0 3



(c) H =


2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

 (d) H =


5 −1 −1 1
−1 4 2 −1
−1 2 4 −1
1 −1 −1 5


Solution:

H = UDUT .

(a)

U =


√
2
2

1
2 −1

2

0
√
2
2

√
2
2

−
√
2
2

1
2

1
2

 , D =

2 0 0

0 2 +
√

2 0

0 0 2−
√

2


(b)

U =


√
2
2 −

√
2
2 0

0 0 1√
2
2

√
2
2 0

 , D =

4 0 0
0 2 0
0 0 1


(c)

U =


0 −

√
2
2 0

√
2
2

−
√
2
2 0

√
2
2 0

0
√
2
2 0

√
2
2√

2
2 0

√
2
2 0

 , D =


1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 3
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(d)

U =


0 1

2 −
√
2
2 1

−
√
2
2 −1

2 0 1
2√

2
2 −1

2 0 1
2

0 1
2

√
2
2 0

 , D =


2 0 0 0
0 8 0 0
0 0 4 0
0 0 0 4



(B) For each of the matrices H and vectors v below determine the optimal value in Q. If an optimal solution
exists, compute the complete set of optimal solutions.

a.

H =

2 1 0
1 2 1
0 1 2

 and v =

3
1
1

 .
Solution:

The eigenvalues are 2, 2 ±
√

2 so H is positive definite. Therefore the unique optimal solution is
given by −H−1v = (−2, 1,−1)T .

b.

H =

2 1 0
1 2 1
0 1 −2

 and v =

3
1
1

 .
Solution:

The characteristic polynomial is p(λ) = det(H − λI) = λ3 − 2λ2 − 6λ + 8. Sketching the graph
shows one negative and two positive eigenvalues. Hence H is indefinite so that the optimal value
is −∞.

c.

H =

 5 2 −1
2 1 −1
−1 −1 2

 and v =

3
1
0

 .
Solution:

The characteristic polynomial is p(λ) = det(H−λI) = λ[λ2−8λ+11] whose roots are λ = 0, 4±
√

5.
Hence H is positive semi-definite so that the set of all possible optimal solutions is the set of
solutions to the equation Hx+ v = 0 which is

x =

 1
−1
0

 + t

 1
−3
−1

 ∀ t ∈ R.

(B) Consider the matrix H ∈ R3×3 and vector v ∈ R3 given by

H =

1 4 1
4 20 2
1 2 2

 and v =

1
0
1

 .
Does there exists a vector u ∈ R3 such that f(tu)

t↑∞−→ −∞? If yes, construct u.

Solution:

The eigenvalues show that H is positive semi-definite with one zero eigenvalue. But the system Hx+ v
is inconsistent, so no optimal solution exists. The vector u = (−6, 1, 2)T lies in the null-space of H, and
f(tu) = −4t. Hence as t ↑ ∞, f(tu) ↓ −∞.
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(C) Consider the linearly constrained quadratic optimization problem

Q(H, g,A, b) minimize
1

2
xTHx+ vTx

subject to Ax = b ,

where H, A, v, and b are given by

H =

1 1 0
1 2 1
0 1 3

 , v = (1, 1, 1)T , b = (4, 2)T , and A =

[
1 2 1
1 0 1

]
.

a. Compute a basis for the null space of A.

Solution: A basis of Nul(A) is (1, 0,−1)T .

b. Solve the problem Q(H, g,A, b).

Solution: Recall that the solution must be of the form

x =

1
1
1

+ t

 1
0
−1


since the vector (1, 1, 1)T solves Ax = b and the vector (1, 0,−1) spans the null space of A. Hence
this is just a one dimensional problem in t which is solved by taking t = 1

2 .
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