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Matrices in R™*"
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d11 412 ... din dle
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A= = [ del de2 den ] =
dml  dm2 amn dme
columns rows
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d11 a1 ... dadmil de1
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Matrices in R™*"

A€ Rmx
a11 di2 ... din dle
a1 a2 ... dp a2e
A= = [ del de2 den ] =
dml  dm2 amn dme
columns rows
T
d11 a1 ... dadmil a,l
1
di2 a2 ... am? deo
T _ _ . [ .T LT T
Al = : : - : - : _[alo doe - -- amo]
T
dip d2n ... Aamn a,n
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Matrix Vector Multiplication

A column space view of matrix vector multiplication.

a1 a2 ain X1
a1 a2 ... d X2
ami am?2 .. @mn Xn
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Matrix Vector Multiplication

A column space view of matrix vector multiplication.

a1 d12 ... din X1 ai

a1 a2 ... ap X2 ai
= X1 .

aml a4m2 --- Aamn Xn am1
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Matrix Vector Multiplication

A column space view of matrix vector multiplication.

a1 d12 ... din X1 ai ai2

a1 a2 ... ap X2 ai axn
= X1 . + X

aml a4m2 --- Aamn Xn am1 am2
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Matrix Vector Multiplication

A column space view of matrix vector multiplication.

a1 d12 ... din X1 ai ai2 ain

a1 a2 ... ap X2 ai axn azn
= X1 . + X . + -+ Xy .

aml a4m2 --- Aamn Xn am1 am2 amn
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Matrix Vector Multiplication

A column space view of matrix vector multiplication.

a1 d12 ... dip X1 ai a2 ain

ani an2 o azn X2 ani an2 azn
=X . + X2 . + Xy

dmi am2 ... Admn Xn am1 am2 amn
= X1 3e1 T X23e2 + - + Xpden
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Matrix Vector Multiplication

A column space view of matrix vector multiplication.

a1 d12 ... dip X1 ai a2 ain

ani an2 o azn X2 ani an2 azn
=X . + X2 . + Xy

dmi am2 ... Admn Xn am1 am2 amn
= X1 3e1 T X23e2 + - + Xpden

A linear combination of the columns.
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The Range of a Matrix

Let A€ R™*" (an m x n matrix having real entries).

Math 408A: Linear Algebra Review



Linear Algebra Review

The Range of a Matrix

Let A€ R™*" (an m x n matrix having real entries).
Range of A

Ran(A) = {Ax [x e R"}

Math 408A: Linear Algebra Review



Linear Algebra Review

The Range of a Matrix

Let A€ R™*" (an m x n matrix having real entries).
Range of A

Ran(A) = {Ax [x e R"}

Ran(A) = the linear span of the columns of A
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A Couple of Special Subspaces

Let vi,...,v, € R".
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» The linear span of vy,..., v:

Span(vi,...,vk) = {&vi +&vo + -+ kv &, -, 6k ERY

So
Ran(A) = Span(ae1, .. ., den)-
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A Couple of Special Subspaces

Let vi,...,v, € R".

» The linear span of vy,..., v:

Span(vi,...,vk) = {&vi +&vo + -+ kv &, -, 6k ERY

So
Ran(A) = Span(ae1, .. ., den)-

Dot product of two vectors x"y = 3" xy;.

» The subspace orthogonal to vy,..., vk:

{vl,...,vk}l:{ZER”

2Tv =0, izl,...,k}
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Matrix Vector Multiplication

A row space view of matrix vector multiplication.

a1 a2

T n
ain X1 ajex D1 AiXi
T n
a1 ax axn X0 EXISY Do @iXi
T n
aml  am2 Amn Xn AmeX Zi:l aAmi Xi

The dot product of x with the rows of A.
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The Null Space of a Matrix

Let A € R™*" (an m x n matrix having real entries).
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The Null Space of a Matrix

Let A € R™*" (an m x n matrix having real entries).
Null Space of A

Nul(A) = {xeR" |[Ax=0}

Nul(A) = subspace orthogonal to the rows of A
= Span(aie, a2e; - - - ; am.)L
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The Null Space of a Matrix

Let A € R™*" (an m x n matrix having real entries).
Null Space of A

Nul(A) = {xeR" |[Ax=0}

Nul(A) = subspace orthogonal to the rows of A
= Span(aie, a2e; - - - ; am.)L
= Ran(AT)*
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The Null Space of a Matrix

Let A € R™*" (an m x n matrix having real entries).
Null Space of A

Nul(A) = {xeR" |[Ax=0}

Nul(A) = subspace orthogonal to the rows of A
= Span(aie, a2e; - - - ; am.)L
= Ran(AT)*

Fundamental Theorem of the Alternative:

Nul(A) = Ran(AT)*  Ran(A) = Nul(AT)*
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Matrix-matrix multiplication

For matrices A € R™*" and A € R"*¥ the product AB € R™*K is
defined by
(AB);; = ajbej.
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Matrix-matrix multiplication

For matrices A € R™*" and A € R"*¥ the product AB € R™*K is
defined by
(AB);; = ajbej.

Equivalently

AB =[ABs1 ABsy ... ABg]
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Block Structured Matrices
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0
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Block Structured Matrices

Block Structured Matrices

3 41100 3 41100
2 20010 2 20010
A=|(-1 000O0T1]|=-1 00001
0 0021 4 0 0021 4
0 0010 3 0 001 0 3
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Block Structured Matrices

341100 3 -4 1|1 0 0
2 20010 2 2 0[0 10 B |
A=| -1 000 0 1 |= -1 00001:[ 3“]
0 0021 4 0 00|21 4 0253 | C
0 0010 3 000‘103
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Block Structured Matrices

3 41100 3 =4 1]1 00
2 20010 2 2 0/0 10 B |
A=| -1 000 0 1]|=| -1 00001:[0 é“]
0 002 1 4 0 002 1 4 2x3
0 0010 3 0 00[1 0 3
where
3 -4 1
B:220,C:iég]
1 0 0
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Multiplication of Block Structured Matrices

Consider the matrix product AM, where

3 41100 (1)2
2 20010 11
A=| -1 0000 1|and M=| ", ]
0 0021 4 T 3
0 00103 P
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Multiplication of Block Structured Matrices

Consider the matrix product AM, where

>
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|

Can we exploit the structure of A?
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Multiplication of Block Structured Matrices

Consider the matrix product AM, where

5 4 110 0 1o
2 2 0/0 10 1

A=| -1 00[0 0 1|ad M= |——
000‘214 v 3
0 00|10 3 5 0

Can we exploit the structure of A?
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Block Structured Matrices

Multiplication of Block Structured Matrices

Consider the matrix product AM, where

5 4 110 0 1o
2 2 0/0 10 1

A=| -1 00[0 0 1|ad M= |——
000‘214 v 3
0 00|10 3 5 0

Can we exploit the structure of A?

B hx3 ]
A—
[ Ooxz C
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Block Structured Matrices

Multiplication of Block Structured Matrices

Consider the matrix product AM, where

3 4 1|1 00 ool
2 2 0/0 10 1

A= -1 0 0|0 0 1 and M= 51
0 0 0‘2 1 4 4 3
0 00[1 0 3 5 0

Can we exploit the structure of A?
B k3 X
A= ke M=

[ Ops C so take E
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Block Structured Matrices

Multiplication of Block Structured Matrices

Consider the matrix product AM, where

3 4 1|1 00 ool
2 20[0 10 1
A= -1 0 0|0 0 1 and M= 51
0 0 0 ‘ 2 1 4 4 3
0 00[1 0 3 5 0
Can we exploit the structure of A?
B B3 X
A= k M =
[ Ops C so take E
1 2 2 -1
where X = 0 4 and Y = 4 3
-1 -1 -2 0
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Multiplication of Block Structured Matrices
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Multiplication of Block Structured Matrices
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Multiplication of Block Structured Matrices

2]
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Block Structured Matrices

Multiplication of Block Structured Matrices

4 —12

6 15

= | -3 =2
0 1

-4 -1
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Gaussian Elimination Matrices

Solving Systems of Linear equations

Let Ac R™" and b € R™.
Find all solutions x € R" to the system Ax = b.
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Gaussian Elimination Matrices

Solving Systems of Linear equations

Let Ac R™" and b € R™.
Find all solutions x € R" to the system Ax = b.

The set of solutions is either empty, a single point,
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Gaussian Elimination Matrices

Solving Systems of Linear equations

Let Ac R™" and b € R™.
Find all solutions x € R" to the system Ax = b.

The set of solutions is either empty, a single point, or an infinite
set.
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Gaussian Elimination Matrices

Solving Systems of Linear equations

Let Ac R™" and b € R™.
Find all solutions x € R" to the system Ax = b.

The set of solutions is either empty, a single point, or an infinite
set.

If a solution xg € R" exists, then the set of solutions is given by

xo + Nul(A) .
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Gaussian Elimination Matrices

Gaussian Elimination and the 3 Elementary Row
Operations

We solve the system Ax = b by transforming the augmented matrix
[Alb]

into upper echelon form using the three elementary row operations.
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This process is called Gaussian elimination.
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Gaussian Elimination and the 3 Elementary Row
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We solve the system Ax = b by transforming the augmented matrix
[Alb]

into upper echelon form using the three elementary row operations.
This process is called Gaussian elimination.
The three elementary row operations.
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Gaussian Elimination Matrices

Gaussian Elimination and the 3 Elementary Row
Operations

We solve the system Ax = b by transforming the augmented matrix
[Alb]

into upper echelon form using the three elementary row operations.
This process is called Gaussian elimination.
The three elementary row operations.

1. Interchange any two rows.
2. Multiply any row by a non-zero constant.

3. Replace any row by itself plus a multiple of any other row.
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Gaussian Elimination Matrices

Gaussian Elimination and the 3 Elementary Row
Operations

We solve the system Ax = b by transforming the augmented matrix
[Alb]

into upper echelon form using the three elementary row operations.
This process is called Gaussian elimination.
The three elementary row operations.

1. Interchange any two rows.

2. Multiply any row by a non-zero constant.

3. Replace any row by itself plus a multiple of any other row.

These elementary row operations can be interpreted as multiplying
the augmented matrix on the left by a special matrix.

Math 408A: Linear Algebra Review



Gaussian Elimination Matrices

Exchange and Permutation Matrices

An exchange matrix is given by permuting any two columns of the
identity.
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Gaussian Elimination Matrices

Exchange and Permutation Matrices

An exchange matrix is given by permuting any two columns of the
identity.

Multiplying any 4 x n matrix on the left by the exchange matrix

O O O
= O O O
o= OO
O O = O

will exchange the second and fourth rows of the matrix.
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Gaussian Elimination Matrices

Exchange and Permutation Matrices

An exchange matrix is given by permuting any two columns of the
identity.

Multiplying any 4 x n matrix on the left by the exchange matrix

O O O
= O O O
o= OO
O O = O

will exchange the second and fourth rows of the matrix.

(multiplication of a m x 4 matrix on the right by this exchanges
the second and fourth columns.)
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Gaussian Elimination Matrices

Exchange and Permutation Matrices

An exchange matrix is given by permuting any two columns of the
identity.

Multiplying any 4 x n matrix on the left by the exchange matrix

O O O
= O O O
o= OO
O O = O

will exchange the second and fourth rows of the matrix.
(multiplication of a m x 4 matrix on the right by this exchanges
the second and fourth columns.)

A permutation matrix is obtained by permuting the columns of the
identity matrix.
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Gaussian Elimination Matrices

Notes on Matrix Multiplication

Let A = [ajj]mxn € RT*".
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Notes on Matrix Multiplication

Let A = [ajj]mxn € RT*".

Left Multiplication of A:
When multiplying A on the left by an m x m matrix M, it is often
useful to think of this as an action on the rows of A.

For example, left multiplication by a permutation matrix permutes
the rows of the matrix.
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Gaussian Elimination Matrices

Notes on Matrix Multiplication

Let A = [ajj]mxn € RT*".

Left Multiplication of A:
When multiplying A on the left by an m x m matrix M, it is often
useful to think of this as an action on the rows of A.

For example, left multiplication by a permutation matrix permutes
the rows of the matrix.

However, mechanically, left multiplication corresponds to matrix
vector multiplication on the columns.

MA = [I\/Ia.1 I\/Ia.2 Ma.,,]
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Notes on Matrix Multiplication

Let A = [ajj]mxn € RT*".
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Notes on Matrix Multiplication
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Right Multiplication of A:
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useful to think of this as an action on the columns of A.

For example, right multiplication by a permutation matrix
permutes the columns of the matrix.
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Gaussian Elimination Matrices

Notes on Matrix Multiplication

Let A = [ajj]mxn € RT*".

Right Multiplication of A:
When multiplying A on the right by an n x n matrix N, it is often
useful to think of this as an action on the columns of A.

For example, right multiplication by a permutation matrix
permutes the columns of the matrix.

However, mechanically, right
multiplication corresponds to
left matrix vector multiplication
on the rows.
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Gaussian Elimination Matrices

Notes on Matrix Multiplication

Let A = [ajj]mxn € RT*".

Right Multiplication of A:
When multiplying A on the right by an n x n matrix N, it is often
useful to think of this as an action on the columns of A.

For example, right multiplication by a permutation matrix
permutes the columns of the matrix.

However, mechanically, right al’x
multiplication corresponds to AN = 320
left matrix vector multiplication

on the rows. ameN
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Gaussian Elimination Matrices

Gaussian Elimination Matrices

The key step in Gaussian elimination is to transform a vector of

the form
a

a )
b
where a € R%, 0 #a€R,and b e R" k=1 into one of the form

a

o
0
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Gaussian Elimination Matrices

Gaussian Elimination Matrices

The key step in Gaussian elimination is to transform a vector of

the form
a

a )
b
where a € R%, 0 #a€R,and b e R" k=1 into one of the form

a
o
0

This can be accomplished by left matrix multiplication as follows.
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Gaussian Elimination Matrices

Gaussian Elimination Matrices

acRK 0#£acR, and be R"k1

Tk 0 0 a
0 1 0 «
0 —a b lp—k-1)x(n—k-1) b
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Gaussian Elimination Matrices

acRK 0#£acR, and be R"k1

Tk 0 0 a
0 1 0 a | =
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Gaussian Elimination Matrices

acRK 0#£acR, and be R"k1

Tk 0 0 a a
0 1 0 a | =
0 —a b lp—k-1)x(n—k-1) b
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Gaussian Elimination Matrices

Gaussian Elimination Matrices

acRK 0#£acR, and be R"k1

Tk 0 0 a a
0 1 0 a | =
0 —a b lp—k-1)x(n—k-1) b
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Gaussian Elimination Matrices

Gaussian Elimination Matrices

acRK 0#£acR, and be R"k1

Dk i 0 0 a a
0 1 0 « = | «
0 —a b lp—k-1)x(n—k-1) b 0
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Gaussian Elimination Matrices

Gaussian Elimination Matrices

The matrix
Tk 0 0
0 1 0
0 —a b ln—k—1)x(n—k-1)

is called a Gaussian elimination matrix.
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Gaussian Elimination Matrices

Gaussian Elimination Matrices

The matrix
Tk 0 0
0 1 0
0 —a b ln—k—1)x(n—k-1)

is called a Gaussian elimination matrix.
This matrix is invertible with inverse

ek 0 0
0 1 0

0 a'b lpok—1)x(n—k-1)
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Gaussian Elimination Matrices

Gaussian Elimination Matrices

The matrix
Tk 0 0
0 1 0
0 —a b ln—k—1)x(n—k-1)

is called a Gaussian elimination matrix.
This matrix is invertible with inverse

ek 0 0
0 1 0

0 a'b lpok—1)x(n—k-1)

Note that a Gaussian elimination matrix and its inverse are both
lower triangular matrices.
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Gaussian Elimination Matrices

Matrix Sub-Algebras

Lower (upper) triangular matrices in R™*" are said to form a
sub-algebra of R™".
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Gaussian Elimination Matrices

Matrix Sub-Algebras

Lower (upper) triangular matrices in R™*" are said to form a
sub-algebra of R™".

A subset S of R™*" is said to be a sub-algebra of R™" if

» S is a subspace of R"*",
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Gaussian Elimination Matrices

Matrix Sub-Algebras

Lower (upper) triangular matrices in R™*" are said to form a
sub-algebra of R™".

A subset S of R™*" is said to be a sub-algebra of R™" if
» S is a subspace of R"*",

» S is closed wrt matrix multiplication, and
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Gaussian Elimination Matrices

Matrix Sub-Algebras

Lower (upper) triangular matrices in R™*" are said to form a
sub-algebra of R™".

A subset S of R™*" is said to be a sub-algebra of R™" if
» S is a subspace of R"*",
» S is closed wrt matrix multiplication, and
» if M € S is invertible, then M~1 € S.
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

Transformation to echelon
(upper triangular) form.
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

11 2
Transformation to echelon A— 2 4 2
(upper triangular) form. 11 3
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

11 2
Transformation to echelon A— 2 4 2
(upper triangular) form. 11 3

Eliminate the first column with
a Gaussian elimination matrix.
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

11 2

Transformation to echelon A— > 4 2

(upper triangular) form. 11 3
100
Eliminate the first column with Gi=|-210
a Gaussian elimination matrix. 10 1
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

11 2

Transformation to echelon A— > 4 2

(upper triangular) form. 11 3
100
Eliminate the first column with Gi=|-210
a Gaussian elimination matrix. 10 1

1 00
GA=| -2 10
1 01

_ N =
ol
W NN
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

11 2
Transformation to echelon A— > 4 2
(upper triangular) form. 11 3
1 0 0]
Eliminate the first column with Gi=|-210
a Gaussian elimination matrix. 10 1

1 00 11 2
GA=| -2 10 2 4 2| =
1 01 -1 1 3
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

11 2
Transformation to echelon A— > 4 2
(upper triangular) form. 11 3
1 0 0]
Eliminate the first column with Gi=|-210
a Gaussian elimination matrix. 10 1

1 00 11 2 1
GA=| -2 10 2 4 2| =
1 01 -1 1 3
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

11 2

Transformation to echelon A— > 4 2

(upper triangular) form. 11 3
1 0 0]

Eliminate the first column with Gi=|-210

a Gaussian elimination matrix. 10 1
100 112 11 i

GA=| -2 10 2 4 2| =

1 01 -1 13 ]
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

11 2

Transformation to echelon A— > 4 2

(upper triangular) form. 11 3
1 0 0]

Eliminate the first column with Gi=|-210

a Gaussian elimination matrix. 10 1
100 112 11 2]

GA=| -2 10 2 4 2| =

1 01 -1 13 ]
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

11 2

Transformation to echelon A— > 4 2

(upper triangular) form. 11 3
1 0 0]

Eliminate the first column with Gi=|-210

a Gaussian elimination matrix. 10 1
100 112 11 2]

GA=| -2 10 2 42| =10

1 01 -1 13 ]
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Transformation to echelon A— > 4 2

(upper triangular) form. 11 3
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Eliminate the first column with Gi=|-210

a Gaussian elimination matrix. 10 1
100 112 11 2]
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1 01 -1 13 ]
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

11 2

Transformation to echelon A— > 4 2

(upper triangular) form. 11 3
1 0 0]

Eliminate the first column with Gi=|-210

a Gaussian elimination matrix. 10 1
100 112 11 2]

GA=| -2 10 2 42| =102 =2
1 01 -1 13 0 2 5 |
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

Now do Gaussian eliminiation on the second column.

11
0 2 -2
0 2 5
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

Now do Gaussian eliminiation on the second column.

11 2 1 00
02 -2 G=|0 10
02 5 0 -1 1
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Now do Gaussian eliminiation on the second column.

11 2 1 00
0 2 -2 G=|0 10
0 2 5 0 -1 1

1 00 11 2

0 10 02 2| =

0 -1 1 0 2 5
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Now do Gaussian eliminiation on the second column.

11 2 1 00
0 2 -2 G=|0 10
0 2 5 0 -1 1

1 00 11 2 1
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0 -1 1 0 2 5 0
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

Now do Gaussian eliminiation on the second column.

11 2 1 00
0 2 -2 G=|0 10
0 2 5 0 -1 1
1 00 11 2 11
0 10 02 -2 =10
0 -1 1 0 2 5 0
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

Now do Gaussian eliminiation on the second column.

11 2 1 00

0 2 -2 G=|0 10

0 2 5 0 -1 1
1 00 11 2 11 2
0 10 02 -2 =10
0 -1 1 0 2 5 0
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

Now do Gaussian eliminiation on the second column.

11 2 1 00

0 2 -2 G=|0 10

0 2 5 0 -1 1
1 00 11 2 11 2
0 10 02 -2 =10 2
0 -1 1 0 2 5 0

Math 408A: Linear Algebra Review



Gaussian Elimination Matrices

Gaussian Elimination in Practice

Now do Gaussian eliminiation on the second column.

11 2 1 00

0 2 -2 G=|0 10

0 2 5 0 -1 1
1 00 11 2 11 2
0 10 02 2| =102 -2
0 -1 1 0 2 5 0
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Gaussian Elimination Matrices

Gaussian Elimination in Practice

Now do Gaussian eliminiation on the second column.

11 2 1 00

0 2 -2 G=|0 10

0 2 5 0 -1 1
1 00 11 2 11 2
0 10 02 2| =102 -2
0 -1 1 0 2 5 00 7
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Gauss-Jordan Elimination (Pivoting

Gauss-Jordan Elimination, or Pivot Matrices

What happens in the following multiplication?

s i —ala 0 a
0 a1 0 «
0 —a'b lpn—k-1)x(n—k-1) b
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Gauss-Jordan Elimination (Pivoting

Gauss-Jordan Elimination, or Pivot Matrices

What happens in the following multiplication?

s i —ala 0 a 0
0 a~l 0 a| =11
0 —a'b lpn—k-1)x(n—k-1) b
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Gauss-Jordan Elimination (Pivoting

Gauss-Jordan Elimination, or Pivot Matrices

What happens in the following multiplication?

s i —ala 0 a 0
0 a1 0 a| =11
0 —a'b lpn—k-1)x(n—k-1) b 0
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Gauss-Jordan Elimination (Pivoting

Gauss-Jordan Elimination, or Pivot Matrices

What happens in the following multiplication?

s i —ala 0 a 0
0 a1 0 a| =11
0 —a'b lpn—k-1)x(n—k-1) b 0

What is the inverse of this matrix?
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Gauss-Jordan Elimination (Pivoting

Gauss-Jordan Elimination, or Pivot Matrices

What happens in the following multiplication?

s i —ala 0 a 0
0 a1 0 a| =11
0 —a'b lpn—k-1)x(n—k-1) b 0

What is the inverse of this matrix?

/k><k a 0
0 « 0

0 b ln—k-1)x(n—k-1)
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