Math 408

Homework Set 4

(1) Use the "delta method" (as we did in class for the Linear Least Squares function) to compute the gradient and the Hessian of the following functions.
(a) $f(x):=\frac{1}{2}\|A x-b\|_{2}^{2}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$.
(b) $f(x):=\frac{1}{2}\|F(x)\|_{2}^{2}$, where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is such that all of its component functions $F_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ twice differentiable.
(c) $f(x):=\frac{1}{2}(x-\bar{x})^{T} H(x-\bar{x})+g^{T}(x-\bar{x})$, where $H \in \mathbb{R}^{n \times n}$ is symmetric and $\bar{x}, g \in \mathbb{R}^{n}$.
(2) Compute the gradient and Hessian of each of the following functions using first-order and second-order partial derivatives (if they exist).
(a) $f(x)=x_{1}^{2}-4 x_{1}+2 x_{2}^{2}+7$
(b) $f(x)=e^{-\|x\|^{2}}$
(c) $f(x)=x_{1}^{2}-2 x_{1} x_{2}+\frac{1}{3} x_{2}^{3}-8 x_{2}$
(d) $f(x)=\left(2 x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\left(x_{3}-1\right)^{2}$
(e) $f(x)=x_{1}^{4}+16 x_{1} x_{2}+x_{2}^{4}$
(f) $f(x)=\left(1-x_{1}\right)^{2}+\sum_{j=1}^{n-1} 10^{j}\left(x_{j}-x_{j+1}^{2}\right)^{2}$ (The Rosenbrock function)
(g) $f(x)=3 x_{1}^{2}+x_{1} x_{2} x_{3}$
(h) $f(x)=2 \cos \left(x_{1}\right) \sin \left(x_{2} x_{3}\right)$
(i) $f(x)=\ln \left[\exp \left(x_{1}^{2}\right)+\exp \left(x_{2}^{2}\right)+\exp \left(x_{3}^{2}\right)\right]$
(j) $f(x)=1 / \sqrt{1+\left(x_{2} x_{3}\right)^{2}}$
(k) $f(x, y)=5 x^{2}+2 x y+y^{2}-x+2 y+3$
(l) $f(x, y)= \begin{cases}(x+2 y+1)^{8}-\log \left((x y)^{2}\right), & \text { if } 0<x, 0<y, \\ +\infty, & \text { otherwise. }\end{cases}$
(m) $f(x, y)=4 e^{3 x-y}+5 e^{x^{2}+y^{2}}$
(n) $f(x, y)= \begin{cases}x+\frac{2}{x}+2 y+\frac{4}{y}, & \text { if } 0<x, 0<y, \\ +\infty, & \text { otherwise } .\end{cases}$
(3) A critical point of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is any point x at which $\nabla f(x)=0$. Compute all of the critical points of the functions in Problem (2). If no critical point exists, explain why.

