This homework set will focus on the optimization problem

$$
\mathcal{Q} \quad \min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} H x+g^{T} x,
$$

where $H \in \mathbb{R}^{n \times n}$ is symmetric and $g \in \mathbb{R}^{n}$.
(1) Each of the following functions can be written in the form $f(x)=\frac{1}{2} x^{T} H x+g^{T} x$ with H symmetric.

For each of these functions what are H and g
(a) $f(x)=x_{1}^{2}-4 x_{1}+2 x_{2}^{2}+7$
(c) $f(x)=x_{1}^{2}-2 x_{1} x_{2}+\frac{1}{2} x_{2}^{2}-8 x_{2}$
(d) $f(x)=\left(2 x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\left(x_{3}-1\right)^{2}$
(e) $f(x)=x_{1}^{2}+16 x_{1} x_{2}+4 x_{2} x_{3}+x_{2}^{2}$
(2) For $a, b \in \mathbb{R}$, consider the matrix

$$
H=\left[\begin{array}{lll}
2 & a & 0 \\
a & 2 & b \\
0 & b & 2
\end{array}\right]
$$

(a) Compute the eigenvalues of H as functions of a and b.
(b) For what values of a and b is H positive definite.
(c) For what values of a and b is H positive semi-definite.
(d) For what values of a and b is H negative semi-definite.
(e) For what values of a and b is H negative definite.
(f) For what values of a and b is H indefinite.
(3) Consider the matrix

$$
H=\left[\begin{array}{lll}
4 & 3 & 2 \\
3 & 9 & 3 \\
2 & 3 & 4
\end{array}\right]
$$

(a) Compute the eigenvalues of H.
(b) Compute and orthonormal basis of eigenvectors for H.
(c) Compute the eigenvalue decomposition of H.
(4) For each of the matrices H and vectors g below determine the optimal value in \mathcal{Q}. If an optimal solution exists, compute the complete set of optimal solutions.

$$
H=\left[\begin{array}{lll}
2 & 1 & 0 \tag{a}\\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right] \quad \text { and } \quad g=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

(b)

$$
H=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & -2
\end{array}\right] \quad \text { and } \quad g=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

(c)

$$
H=\left[\begin{array}{ccc}
5 & 2 & -1 \\
2 & 1 & -1 \\
-1 & -1 & 2
\end{array}\right] \quad \text { and } \quad g=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]
$$

(5) Consider the matrix $H \in \mathbb{R}^{3 \times 3}$ and vector $g \in \mathbb{R}^{3}$ given by

$$
H=\left[\begin{array}{ccc}
1 & 4 & 1 \\
4 & 20 & 2 \\
1 & 2 & 2
\end{array}\right] \quad \text { and } \quad g=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Does there exists a vector $u \in \mathbb{R}^{3}$ such that $f(t u) \xrightarrow{t \uparrow \infty}-\infty$? If yes, construct u.
(6) Let $H \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. For $\gamma_{1}, \gamma_{2} \in \mathbb{R}$ with $\gamma_{1} \leq \gamma_{2}$, show that $\gamma_{1} \leq \lambda_{j} \leq \gamma_{2}$ for all $j=1,2, \ldots, n$ if and only if

$$
\gamma_{1}\|u\|_{2}^{2} \leq u^{T} H u \leq \gamma_{2}\|u\|_{2}^{2}
$$

for all $u \in \mathbb{R}^{n}$.

