
CHAPTER 2

Review of Matrices and Block Structures

Numerical linear algebra lies at the heart of modern scientific computing and computational science. Today
it is not uncommon to perform numerical computations with matrices having millions of components. The key to
understanding how to implement such algorithms is to exploit underlying structure within the matrices. In these
notes we touch on a few ideas and tools for dissecting matrix structure. Specifically we are concerned with the block
structure matrices.

1. Rows and Columns

Let A ∈ Rm×n so that A has m rows and n columns. Denote the element of A in the ith row and jth column
as Aij . Denote the m rows of A by A1·, A2·, A3·, . . . , Am· and the n columns of A by A·1, A·2, A·3, . . . , A·n. For
example, if

A =

 3 2 −1 5 7 3
−2 27 32 −100 0 0
−89 0 47 22 −21 33

 ,
then A2,4 = −100,

A1· =
[
3 2 −1 5 7 3

]
, A2· =

[
−2 27 32 −100 0 0

]
, A3· =

[
−89 0 47 22 −21 33

]
and

A·1 =

 3
−2
−89

 , A·2 =

 2
27
0

 , A·3 =

−1
32
47

 , A·4 =

 5
−100

22

 , A·5 =

 7
0
−21

 , A·6 =

 3
0
33

 .
Exercise 1.1. If

C =


3 −4 1 1 0 0
2 2 0 0 1 0
−1 0 0 0 0 1

0 0 0 2 1 4
0 0 0 1 0 3

 ,

what are C4,4, C·4 and C4·? For example, C2· =
[
2 2 0 0 1 0

]
and C·2 =


−4
2
0
0
0

 .
The block structuring of a matrix into its rows and columns is of fundamental importance and is extremely

useful in understanding the properties of a matrix. In particular, for A ∈ Rm×n it allows us to write

A =


A1·
A2·
A3·

...
Am·

 and A =
[
A·1 A·2 A·3 . . . A·n

]
.

These are called the row and column block representations of A, respectively
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1.1. Matrix vector Multiplication. Let A ∈ Rm×n and x ∈ Rn. In terms of its coordinates (or components),

we can also write x =


x1
x2
...
xn

 with each xj ∈ R. The term xj is called the jth component of x. For example if

x =

 5
−100

22

 ,
then n = 3, x1 = 5, x2 = −100, x3 = 22. We define the matrix-vector product Ax by

Ax =


A1· • x
A2· • x
A3· • x

...
Am· • x

 ,
where for each i = 1, 2, . . . ,m, Ai· • x is the dot product of the ith row of A with x and is given by

Ai· • x =

n∑
j=1

Aijxj .

For example, if

A =

 3 2 −1 5 7 3
−2 27 32 −100 0 0
−89 0 47 22 −21 33

 and x =


1
−1
0
0
2
3

 ,
then

Ax =

 24
−29
−32

 .
Exercise 1.2. If

C =


3 −4 1 1 0 0
2 2 0 0 1 0
−1 0 0 0 0 1

0 0 0 2 1 4
0 0 0 1 0 3

 and x =


1
−1
0
0
2
3

 ,
what is Cx?

Note that if A ∈ Rm×n and x ∈ Rn, then Ax is always well defined with Ax ∈ Rm. In terms of components,
the ith component of Ax is given by the dot product of the ith row of A (i.e. Ai·) and x (i.e. Ai· • x).

The view of the matrix-vector product described above is the row-space perspective, where the term row-space
will be given a more rigorous definition at a later time. But there is a very different way of viewing the matrix-vector
product based on a column-space perspective. This view uses the notion of the linear combination of a collection of
vectors.

Given k vectors v1, v2, . . . , vk ∈ Rn and k scalars α1, α2, . . . , αk ∈ R, we can form the vector

α1v
1 + α2v

2 + · · ·+ αkv
k ∈ Rn .

Any vector of this kind is said to be a linear combination of the vectors v1, v2, . . . , vk where the α1, α2, . . . , αk
are called the coefficients in the linear combination. The set of all such vectors formed as linear combinations of
v1, v2, . . . , vk is said to be the linear span of v1, v2, . . . , vk and is denoted

span
(
v1, v2, . . . , vk

)
:=
{
α1v

1 + α2v
2 + · · ·+ αkv

k
∣∣α1, α2, . . . , αk ∈ R

}
.
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Returning to the matrix-vector product, one has that

Ax =


A11x1 +A12x2 +A13x3 + · · ·+A1nxn
A21x1 +A22x2 +A23x3 + · · ·+A2nxn

...
...

...
Am1x1 +Am2x2 +Am3x3 + · · ·+Amnxn

 = x1A·1 + x2A·2 + x3A·3 + · · ·+ xnA·n,

which is a linear combination of the columns of A. That is, we can view the matrix-vector product Ax as taking a
linear combination of the columns of A where the coefficients in the linear combination are the coordinates of the
vector x.

We now have two fundamentally different ways of viewing the matrix-vector product Ax.

Row-Space view of Ax:

Ax =


A1· • x
A2· • x
A3· • x

...
Am· • x


Column-Space view of Ax:

Ax = x1A·1 + x2A·2 + x3A·3 + · · ·+ xnA·n .

2. Matrix Multiplication

We now build on our notion of a matrix-vector product to define a notion of a matrix-matrix product which
we call matrix multiplication. Given two matrices A ∈ Rm×n and B ∈ Rn×k note that each of the columns of B
resides in Rn, i.e. B·j ∈ Rn i = 1, 2, . . . , k. Therefore, each of the matrix-vector products AB·j is well defined for
j = 1, 2, . . . , k. This allows us to define a matrix-matrix product that exploits the block column structure of B by
setting

(5) AB :=
[
AB·1 AB·2 AB·3 · · · AB·k

]
.

Note that the jth column of AB is (AB)·j = AB·j ∈ Rm and that AB ∈ Rm×k, i.e.

if H ∈ Rm×n and L ∈ Rn×k, then HL ∈ Rm×k.

Also note that

if T ∈ Rs×t and M ∈ Rr×`, then the matrix product TM is only defined when t = r.

For example, if

A =

 3 2 −1 5 7 3
−2 27 32 −100 0 0
−89 0 47 22 −21 33

 and B =


2 0
−2 2
0 3
0 0
1 1
2 −1

 ,
then

AB =

A


2
−2
0
0
1
2

 A


0
−2
3
0
1
−1



 =

 15 5
−58 150
−133 87

 .

Exercise 2.1. if

C =


3 −4 1 1
2 2 0 0
−1 0 0 0

0 0 0 2
0 1 0 1

 and D =


−1 0 2 4 3
0 −2 −1 4 5
5 2 −4 1 1
3 0 1 0 0

 ,
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is CD well defined and if so what is it?

The formula (5) can be used to give further insight into the individual components of the matrix product AB.
By the definition of the matrix-vector product we have for each j = 1, 2, . . . , k

AB·j =

A1· •B·j
A2· •B·j
Am· •B·j

 .
Consequently,

(AB)ij = Ai· •B·j ∀ i = 1, 2, . . .m, j = 1, 2, . . . , k.

That is, the element of AB in the ith row and jth column, (AB)ij , is the dot product of the ith row of A with the
jth column of B.

2.1. Elementary Matrices. We define the elementary unit coordinate matrices in Rm×n in much the same
way as we define the elementary unit coordinate vectors. Given i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}, the
elementary unit coordinate matrix Eij ∈ Rm×n is the matrix whose ij entry is 1 with all other entries taking the
value zero. This is a slight abuse of notation since the notation Eij is supposed to represent the ijth entry in the
matrix E. To avoid confusion, we reserve the use of the letter E when speaking of matrices to the elementary
matrices.

Exercise 2.2. (Multiplication of square elementary matrices)Let i, k ∈ {1, 2, . . . ,m} and j, ` ∈ {1, 2, . . . ,m}.
Show the following for elementary matrices in Rm×m first for m = 3 and then in general.

(1) EijEk` =

{
Ei` , if j = k,

0 , otherwise.
(2) For any α ∈ R, if i 6= j, then (Im×m − αEij)(Im×m + αEij) = Im×m so that

(Im×m + αEij)
−1 = (Im×m − αEij).

(3) For any α ∈ R with α 6= 0, (I + (α−1 − 1)Eii)(I + (α− 1)Eii) = I so that

(I + (α− 1)Eii)
−1 = (I + (α−1 − 1)Eii).

Exercise 2.3. (Elementary permutation matrices)Let i, ` ∈ {1, 2, . . . ,m} and consider the matrix Pij ∈ Rm×m
obtained from the identity matrix by interchanging its i and `th rows. We call such a matrix an elementary
permutation matrix. Again we are abusing notation, but again we reserve the letter P for permutation matrices
(and, later, for projection matrices). Show the following are true first for m = 3 and then in general.

(1) Pi`Pi` = Im×m so that P−1i` = Pi`.
(2) PTi` = Pi`.
(3) Pi` = I − Eii − E`` + Ei` + E`i.

Exercise 2.4. (Three elementary row operations as matrix multiplication)In this exercise we show that the
three elementary row operations can be performed by left multiplication by an invertible matrix. Let A ∈ Rm×n,
α ∈ R and let i, ` ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}. Show that the following results hold first for m = n = 3 and
then in general.

(1) (row interchanges) Given A ∈ Rm×n, the matrix PijA is the same as the matrix A except with the i and
jth rows interchanged.

(2) (row multiplication) Given α ∈ R with α 6= 0, show that the matrix (I + (α − 1)Eii)A is the same as the
matrix A except with the ith row replaced by α times the ith row of A.

(3) Show that matrix EijA is the matrix that contains the jth row of A in its ith row with all other entries
equal to zero.

(4) (replace a row by itself plus a multiple of another row) Given α ∈ R and i 6= j, show that the matrix
(I +αEij)A is the same as the matrix A except with the ith row replaced by itself plus α times the jth row
of A.
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2.2. Associativity of matrix multiplication. Note that the definition of matrix multiplication tells us that
this operation is associative. That is, if A ∈ Rm×n, B ∈ Rn×k, and C ∈ Rk×s, then AB ∈ Rm×k so that (AB)C is
well defined and BC ∈ Rn×s so that A(BC) is well defined, and, moreover,

(AB)C =
[
(AB)C·1 (AB)C·2 · · · (AB)C·s

]
(6)

where for each ` = 1, 2, . . . , s

(AB)C·` =
[
AB·1 AB·2 AB·3 · · · AB·k

]
C·`

= C1`AB·1 + C2`AB·2 + · · ·+ Ck`AB·k

= A
[
C1`B·1 + C2`B·2 + · · ·+ Ck`B·k

]
= A(BC·`) .

Therefore, we may write (6) as

(AB)C =
[
(AB)C·1 (AB)C·2 · · · (AB)C·s

]
=

[
A(BC·1) A(BC·2) . . . A(BC·s)

]
= A

[
BC·1 BC·2 . . . BC·s

]
= A(BC) .

Due to this associativity property, we may dispense with the parentheses and simply write ABC for this triple
matrix product. Obviously longer products are possible.

Exercise 2.5. Consider the following matrices:

A =

[
2 3 1
1 0 −3

]
B =

[
4 −1
0 −7

]
C =

−2 3 2
1 1 −3
2 1 0



D =

2 3
1 0
8 −5

 F =


2 1 1 2
1 0 −4 0
3 0 −2 0
5 1 1 1

 G =

[
2 3 1 −2
1 0 −3 0

]
.

Using these matrices, which pairs can be multiplied together and in what order? Which triples can be multiplied
together and in what order (e.g. the triple product BAC is well defined)? Which quadruples can be multiplied
together and in what order? Perform all of these multiplications.

3. Block Matrix Multiplication

To illustrate the general idea of block structures consider the following matrix.

A =


3 −4 1 1 0 0
0 2 2 0 1 0
1 0 −1 0 0 1
0 0 0 2 1 4
0 0 0 1 0 3

 .

Visual inspection tells us that this matrix has structure. But what is it, and how can it be represented? We re-write
the the matrix given above blocking out some key structures:

A =


3 −4 1 1 0 0
0 2 2 0 1 0
1 0 −1 0 0 1
0 0 0 2 1 4
0 0 0 1 0 3

 =

[
B I3×3
02×3 C

]
,

where

B =

 3 −4 1
0 2 2
1 0 −1

 , C =

[
2 1 4
1 0 3

]
,
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I3×3 is the 3 × 3 identity matrix, and 02×3 is the 2 × 3 zero matrix. Having established this structure for the
matrix A, it can now be exploited in various ways. As a simple example, we consider how it can be used in matrix
multiplication.

Consider the matrix

M =


1 2
0 4
−1 −1

2 −1
4 3
−2 0

 .

The matrix product AM is well defined since A is 5×6 and M is 6×2. We show how to compute this matrix product
using the structure of A. To do this we must first block decompose M conformally with the block decomposition of A.
Another way to say this is that we must give M a block structure that allows us to do block matrix multiplication
with the blocks of A. The correct block structure for M is

M =

[
X
Y

]
,

where

X =

 1 2
0 4
−1 −1

 , and Y =

 2 −1
4 3
−2 0

 ,

since then X can multiply

[
B

02×3

]
and Y can multiply

[
I3×3
C

]
. This gives

AM =

[
B I3×3
02×3 C

] [
X
Y

]
=

[
BX + Y
CY

]

=



 2 −11
2 12
−1 −2

 +

 −2 6
4 3
−2 0


[

0 1
−4 −1

]



=


4 −12
2 9
0 3
0 1
−4 −1

 .
Block structured matrices and their matrix product is a very powerful tool in matrix analysis. Consider the

matrices M ∈ Rn×m and T ∈ Rm×k given by

M =

[
An1×m1

Bn1×m2

Cn2×m1 Dn2×m2

]
and

T =

[
Em1×k1 Fm1×k2 Gm1×k3
Hm2×k1 Jm2×k2 Km2×k3

]
,

where n = n1 + n2, m = m1 +m2, and k = k1 + k2 + k3. The block structures for the matrices M and T are said
to be conformal with respect to matrix multiplication since

MT =

[
AE +BH AF +BJ AG+BK
CE +DH CF +DJ CG+DK

]
.

Similarly, one can conformally block structure matrices with respect to matrix addition (how is this done?).
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Exercise 3.1. Consider the the matrix

H =



−2 3 2 0 0 0 0
1 1 −3 0 0 0 0
2 1 −1 0 0 0 0
0 0 0 4 −1 0 0
0 0 0 2 −7 0 0
1 0 0 0 0 2 3
0 1 0 0 0 1 0
0 0 1 0 0 8 −5


.

Does H have a natural block structure that might be useful in performing a matrix-matrix multiply, and if so describe
it by giving the blocks? Describe a conformal block decomposition of the matrix

M =



1 2
3 −4
−5 6
1 −2
−3 4
1 1
1 1


that would be useful in performing the matrix product HM . Compute the matrix product HM using this conformal
decomposition.

Exercise 3.2. Let T ∈ Rm×n with T 6= 0 and let I be the m×m identity matrix. Consider the block structured
matrix A = [ I T ].

(i) If A ∈ Rk×s, what are k and s?
(ii) Construct a non-zero s× n matrix B such that AB = 0.

The examples given above illustrate how block matrix multiplication works and why it might be useful. One
of the most powerful uses of block structures is in understanding and implementing standard matrix factorizations
or reductions.

4. Gauss-Jordan Elimination Matrices and Reduction to Reduced Echelon Form

In this section, we show that Gaussian-Jordan elimination can be represented as a consequence of left multipli-
cation by a specially designed matrix called a Gaussian-Jordan elimination matrix.

Consider the vector v ∈ Rm block decomposed as

v =

 a
α
b


where a ∈ Rs, α ∈ R, and b ∈ Rt with m = s+ 1 + t. In this vector we refer to the α entry as the pivot and assume
that α 6= 0. We wish to determine a matrix G such that

Gv = es+1

where for j = 1, . . . , n, ej is the unit coordinate vector having a one in the jth position and zeros elsewhere. We
claim that the matrix

G =

 Is×s −α−1a 0
0 α−1 0
0 −α−1b It×t


does the trick. Indeed,

(7) Gv =

 Is×s −α−1a 0
0 α−1 0
0 −α−1b It×t

  a
α
b

 =

 a− a
α−1α
−b+ b

 =

 0
1
0

 = es+1.
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The matrix G is called a Gaussian-Jordan Elimination Matrix, or GJEM for short. Note that G is invertible since

G−1 =

 I a 0
0 α 0
0 b I

 ,
Moreover, for any vector of the form w =

 x
0
y

 where x ∈ Rs y ∈ Rt, we have

Gw = w.

The GJEM matrices perform precisely the operations required in order to execute Gauss-Jordan elimination. That
is, each elimination step can be realized as left multiplication of the augmented matrix by the appropriate GJEM.

For example, consider the linear system

2x1 + x2 + 3x3 = 5
2x1 + 2x2 + 4x3 = 8
4x1 + 2x2 + 7x3 = 11
5x1 + 3x2 + 4x3 = 10

and its associated augmented matrix

A =


2 1 3 5
2 2 4 8
4 2 7 11
5 3 4 10

 .
The first step of Gauss-Jordan elimination is to transform the first column of this augmented matrix into the first
unit coordinate vector. The procedure described in (7) can be employed for this purpose. In this case the pivot is
the (1, 1) entry of the augmented matrix and so

s = 0, a is void, α = 2, t = 3, and b =

2
4
5

 ,
which gives

G1 =


1/2 0 0 0
−1 1 0 0
−2 0 1 0
−5/2 0 0 1

 .
Multiplying these two matrices gives

G1A =


1/2 0 0 0
−1 1 0 0
−2 0 1 0
−5/2 0 0 1




2 1 3 5
2 2 4 8
4 2 7 11
5 3 4 10

 =


1 1/2 3/2 5/2
0 1 1 3
0 0 1 1
0 1/2 −7/2 −5/2

 .
We now repeat this process to transform the second column of this matrix into the second unit coordinate vector.
In this case the (2, 2) position becomes the pivot so that

s = 1, a = 1/2, α = 1, t = 2, and b =

[
0

1/2

]
yielding

G2 =


1 −1/2 0 0
0 1 0 0
0 0 1 0
0 −1/2 0 1

 .
Again, multiplying these two matrices gives

G2G1A =


1 −1/2 0 0
0 1 0 0
0 0 1 0
0 −1/2 0 1




1 1/2 3/2 5/2
0 1 1 3
0 0 1 1
0 1/2 −7/2 −5/2

 =


1 0 1 1
0 1 1 3
0 0 1 1
0 0 −4 −4

 .
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Repeating the process on the third column transforms it into the third unit coordinate vector. In this case the pivot
is the (3, 3) entry so that

s = 2, a =

[
1
1

]
, α = 1, t = 1, and b = −4

yielding

G3 =


1 0 −1 0
0 1 −1 0
0 0 1 0
0 0 4 1

 .
Multiplying these matrices gives

G3G2G1A =


1 0 −1 0
0 1 −1 0
0 0 1 0
0 0 4 1




1 0 1 1
0 1 1 3
0 0 1 1
0 0 −4 −4

 =


1 0 0 0
0 1 0 2
0 0 1 1
0 0 0 0

 ,
which is in reduced echelon form. Therefore the system is consistent and the unique solution is

x =

0
2
1

 .
Observe that

G3G2G1 =


3 −1/2 −1 0
1 1 −1 0
−2 0 1 0
−10 −1/2 4 1


and that

(G3G2G1)−1 = G−11 G−12 G−13

=


2 0 0 0
2 1 0 0
4 0 1 0
5 0 0 1




1 1/2 0 0
0 1 0 0
0 0 1 0
0 1/2 0 1




1 0 1 0
0 1 1 0
0 0 1 0
0 0 −4 1



=


2 1 3 0
2 2 4 0
4 2 7 0
5 3 4 1

 .
In particular, reduced Gauss-Jordan form can always be achieved by multiplying the augmented matrix on the left
by an invertible matrix which can be written as a product of Gauss-Jordan elimination matrices.

Exercise 4.1. What are the Gauss-Jordan elimination matrices that transform the vector


2
3
−2
5

 in to ej for

j = 1, 2, 3, 4, and what are the inverses of these matrices?

5. Some Special Square Matrices

We say that a matrix A is square if there is a positive integer n such that A ∈ Rn×n. For example, the Gauss-
Jordan elimination matrices are a special kind of square matrix. Below we give a list of some square matrices with
special properties that are very useful to our future work.

Diagonal Matrices: The diagonal of a matrix A = [Aij ] is the vector (A11, A22, . . . , Ann)T ∈ Rn. A matrix in
Rn×n is said to be diagonal if the only non-zero entries of the matrix are the diagonal entries. Given a
vector v ∈ Rn, we write diag(v) the denote the diagonal matrix whose diagonal is the vector v.

The Identity Matrix: The identity matrix is the diagonal matrix whose diagonal entries are all ones. We denote
the identity matrix in Rk by Ik. If the dimension of the identity is clear, we simply write I. Note that for
any matrix A ∈ Rm×n we have ImA = A = AIn.
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Inverse Matrices: The inverse of a matrix X ∈ Rn×n is any matrix Y ∈ Rn×n such that XY = I in which case
we write X−1 := Y . It is easily shown that if Y is an inverse of X, then Y is unique and Y X = I.

Permutation Matrices: A matrix P ∈ Rn×n is said to be a permutation matrix if P is obtained from the identity
matrix by either permuting the columns of the identity matrix or permuting its rows. It is easily seen that
P−1 = PT .

Unitary Matrices: A matrix U ∈ Rn×n is said to be a unitary matrix if UTU = I, that is UT = U−1. Note that
every permutation matrix is unitary. But the converse is note true since for any vector u with ‖u‖2 = 1
the matrix I − 2uuT is unitary.

Symmetric Matrices: A matrix M ∈ Rn×n is said to be symmetric if MT = M .
Skew Symmetric Matrices: A matrix M ∈ Rn×n is said to be skew symmetric if MT = −M .

6. The LU Factorization

In this section we revisit the reduction to echelon form, but we incorporate permutation matrices into the
pivoting process. Recall that a matrix P ∈ Rm×m is a permutation matrix if it can be obtained from the identity
matrix by permuting either its rows or columns. It is straightforward to show that PTP = I so that the inverse of
a permutation matrix is its transpose. Multiplication of a matrix on the left permutes the rows of the matrix while
multiplication on the right permutes the columns. We now apply permutation matrices in the Gaussian elimination
process in order to avoid zero pivots.

Let A ∈ Rm×n and assume that A 6= 0. Set Ã0 := A. If the (1, 1) entry of Ã0 is zero, then apply permutation

matrices Pl0 and Pr0 to the left and and right of Ã0, respectively, to bring any non-zero element of Ã0 into the

(1, 1) position (e.g., the one with largest magnitude) and set A0 := Pl0Ã0Pr0. Write A0 in block form as

A0 =

[
α1 vT1
u1 Â1

]
∈ Rm×n,

with 0 6= α1 ∈ R, u1 ∈ Rn−1, v1 ∈ Rm−1, and Ã1 ∈ R(m−1)×(n−1). Then using α1 to zero out u1 amounts to left
multiplication of the matrix A0 by the Gaussian elimination matrix[

1 0
− u1

α1
I

]
to get

(8)

[
1 0
− u1

α1
I

] [
α1 vT1
u1 Â1

]
=

[
α1 vT1
0 Ã1

]
∈ Rm×n ,

where

Ã1 = Â1 − u1vT1 /α1 .

Define

L̃1 =

[
1 0
u1

α1
I

]
∈ Rm×m and Ũ1 =

[
α1 vT1
0 Ã1

]
∈ Rm×n .

and observe that

L̃−11 =

[
1 0
− u1

α1
I

]
Hence (8) becomes

(9) L̃−11 Pl0Ã0Pr0 = Ũ1, or equivalently, A = Pl0L̃1Ũ1P
T
r0 .

Note that L̃1 is unit lower triangular (ones on the mail diagonal) and Ũ1 is block upper-triangular with one
nonsingular 1× 1 block and one (m− 1)× (n− 1) block on the block diagonal.

Next consider the matrix Ã1 in Ũ1. If the (1, 1) entry of Ã1 is zero, then apply permutation matrices P̃l1 ∈
R(m−1)×(m−1) and P̃r1 ∈ R(n−1)×(n−1) to the left and and right of Ã1 ∈ R(m−1)×(n−1), respectively, to bring any

non-zero element of Ã0 into the (1, 1) position (e.g., the one with largest magnitude) and set A1 := P̃l1Ã1Pr1. If

the element of Ã1 is zero, then stop. Define

Pl1 :=

[
1 0

0 P̃l1

]
and Pr1 :=

[
1 0

0 P̃r1

]
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so that Pl1 and Pr1 are also permutation matrices and

(10) Pl1Ũ1Pr1 =

[
1 0

0 P̃l1

] [
α1 vT1
0 Ã1

] [
1 0

0 P̃r1

]
=

[
α1 vT1 Pr1
0 P̃l1Ã1Pr1

]
=

[
α1 ṽT1
0 A1

]
,

where ṽ1 := PTr1v1. Define

U1 :=

[
α1 ṽT1
0 A1

]
, where A1 =

[
α2 vT2
u2 Â2

]
∈ R(m−1)×(n−1),

with 0 6= α2 ∈ R, u2 ∈ Rn−2, v1 ∈ Rm−2, and Ã2 ∈ R(m−2)×(n−2). In addition, define

L1 :=

[
1 0

P̃l1
u1

α1
I

]
,

so that

PTl1L1 =

[
1 0

0 P̃Tl1

] [
1 0

P̃l1
u1

α1 I

]
=

[
1 0
u1

α1 P̃Tl1

]
=

[
1 0
u1

α1 I

] [
1 0

0 P̃Tl1

]
= L̃1P

T
l1 ,

and consequently

L−11 Pl1 = Pl1L̃
−1
1 .

Plugging this into (9) and using (10), we obtain

L−11 Pl1Pl0Ã0Pr0Pr1 = Pl1L̃
−1
1 Pl0Ã0Pr0Pr1 = Pl1Ũ1Pr1 = U1,

or equivalently,

Pl1Pl0APr0Pr1 = L1U1.

We can now repeat this process on the matrix A1 since the (1, 1) entry of this matrix is non-zero. The process
can run for no more than the number of rows of A which is m. However, it may terminate after k < m steps if the

matrix Âk is the zero matrix. In either event, we obtain the following result.

Theorem 6.1. [The LU Factorization] Let A ∈ Rm×n. If k = rank (A), then there exist permutation matrices
Pl ∈ Rm×m and Pr ∈ Rn×n such that

PlAPr = LU,

where L ∈ Rm×m is a lower triangular matrix having ones on its diagonal and

U =

[
U1 U2

0 0

]
with U1 ∈ Rk×k a nonsingular upper triangular matrix.

Note that a column permutation is only required if the first column of Âk is zero for some k before termination.
In particular, this implies that the rank (A) < m. Therefore, if rank (A) = m, column permutations are not required,
and Pr = I. If one implements the LU factorization so that a column permutation is only employed in the case when
the first column of Âk is zero for some k, then we say the LU factorization is obtained through partial pivoting.

Example 6.1. We now use the procedure outlined above to compute the LU factorization of the matrix

A =

 1 1 2
2 4 2
−1 1 3

 .
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L−11 A =

 1 0 0
−2 1 0

1 0 1

 1 1 2
2 4 2
−1 1 3


=

 1 1 2
0 2 −3
0 2 5



L−12 L−11 A =

 1 0 0
0 1 0
0 −1 1

  1 1 2
0 2 −3
0 2 5


=

 1 1 2
0 2 −3
0 0 8


We now have

U =

 1 1 2
0 2 −3
0 0 8

 ,
and

L = L1L2 =

 1 0 0
2 1 0
−1 0 1

  1 0 0
0 1 0
0 1 1

 =

 1 0 0
2 1 0
−1 1 1

 .
7. Solving Equations with the LU Factorization

Consider the equation Ax = b. In this section we show how to solve this equation using the LU factorization.
Recall from Theorem 6.1 that the algorithm of the previous section produces a factorization of A of the form
Pl ∈ Rm×m and Pr ∈ Rn×n such that

A = PTl LUP
T
r ,

where Pl ∈ Rm×m and Pr ∈ Rn×n are permutation matrices, L ∈ Rm×m is a lower triangular matrix having ones
on its diagonal, and

U =

[
U1 U2

0 0

]
with U1 ∈ Rk×k a nonsingular upper triangular matrix. Hence we may write the equation Ax = b as

PTl LUP
T
r x = b.

Multiplying through by Pl and replacing UPTr x by w gives the equation

Lw = b̂, where b̂ := Plb .

This equation is easily solved by forward substitution since L is a nonsingular lower triangular matrix. Denote the
solution by w. To obtain a solution x we must still solve UPTr x = w. Set y = Prx. The this equation becomes

w = Uy =

[
U1 U2

0 0

](
y1
y2

)
,

where we have decomposed y to conform to the decomposition of U . Doing the same for w gives(
w1

w2

)
=

[
U1 U2

0 0

](
y1
y2

)
,

or equivalently,
w1 = U1y1 + U2y2

w2 = 0.

Hence, if w2 6= 0, the system is inconsistent, i.e., no solution exists. On the other hand, if w2 = 0, we can take
y2 = 0 and solve the equation

(11) w1 = U1y1
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for y1, then

x = PTr

(
y1
0

)
is a solution to Ax = b. The equation (11) is also easy to solve since U1 is an upper triangular nonsingular matrix
so that (11) can be solved by back substitution.

8. The Four Fundamental Subspaces and Echelon Form

Recall that a subset W of Rn is a subspace if and only if it satisfies the following three conditions:

(1) The origin is an element of W .
(2) The set W is closed with respect to addition, i.e. if u ∈W and v ∈W , then u+ v ∈W .
(3) The set W is closed with respect to scalar multiplication, i.e. if α ∈ R and u ∈W , then αu ∈W .

Exercise 8.1. Given v1, v2, . . . , vk ∈ Rn, show that the linear span of these vectors,

span
(
v1, v2, . . . , vk

)
:=
{
α1v

1 + α2v
2 + · · ·+ αkv

k
∣∣α1, α2, . . . , αk ∈ R

}
is a subspace.

Exercise 8.2. Show that for any set S in Rn, the set

S⊥ = {v : wT v = 0 for all w ∈ S}

is a subspace. If S is itself a subspace, then S⊥ is called the subspace orthogonal (or perpendicular) to the subspace
S.

Exercise 8.3. If S is any suset of Rn (not necessarily a subspace), show that (S⊥)⊥ = span (S).

Exercise 8.4. If S ⊂ Rn is a subspace, show that S = (S⊥)⊥.

A set of vectors v1, v2, . . . , vk ∈ Rn are said to be linearly independent if 0 = a1v
1 + · · · + akv

k if and only if
0 = a1 = a2 = · · · = ak. A basis for a subspace in any maximal linearly independent subspace. An elementary fact
from linear algebra is that the subspace equals the linear span of any basis for the subspace and that every basis
of a subspace has the same number of vectors in it. We call this number the dimension for the subspace. If S is a
subspace, we denote the dimension of S by dimS.

Exercise 8.5. If s ⊂ Rn is a subspace, then any basis of S can contain only finitely many vectors.

Exercise 8.6. Show that every subspace can be represented as the linear span of a basis for that subspace.

Exercise 8.7. Show that every basis for a subspace contains the same number of vectors.

Exercise 8.8. If S ⊂ Rn is a subspace, show that

(12) Rn = S + S⊥

and that

(13) n = dimS + dimS⊥.

Let A ∈ Rm×n. We associate with A its four fundamental subspaces:

Ran(A) := {Ax |x ∈ Rn } Null(A) := {x |Ax = 0}
Ran(AT ) :=

{
AT y

∣∣ y ∈ Rm
}

Null(AT ) :=
{
y
∣∣AT y = 0

}
.

where

(14)
rank(A) := dim Ran(A) nullity(A) := dim Null(A)

rank(AT ) := dim Ran(AT ) nullity(AT ) := dim Null(AT )

Exercise 8.9. Show that the four fundamental subspaces associated with a matrix are indeed subspaces.



20 2. REVIEW OF MATRICES AND BLOCK STRUCTURES

Observe that

Null(A) := {x |Ax = 0}
= {x |Ai· • x = 0, i = 1, 2, . . . ,m}
= {A1·, A2·, . . . , Am·}⊥

= span (A1·, A2·, . . . , Am·)
⊥

= Ran(AT )⊥ .

Since for any subspace S ⊂ Rn, we have (S⊥)⊥ = S, we obtain

(15) Null(A)⊥ = Ran(AT ) and Null(AT ) = Ran(A)⊥.

The equivalences in (15) are called the Fundamental Theorem of the Alternative.
One of the big consequences of echelon form is that

(16) n = rank(A) + nullity(A).

By combining (16), (13) and (15), we obtain the equivalence

rank(AT ) = dim Ran(AT ) = dim Null(A)⊥ = n− nullity(A) = rank(A).

That is, the row rank of a matrix equals the column rank of a matrix, i.e., the dimensions of the row and column
spaces of a matrix are the same!
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