1. Review of Multi-variable Calculus

Throughout this course we will be working with the vector space \mathbb{R}^n. For this reason we begin with a brief review of its metric space properties.

Definition 1.1 (Vector Norm). A function $\nu : \mathbb{R}^n \to \mathbb{R}$ is a *vector norm* on \mathbb{R}^n if the following three properties hold.

i. **(Positivity):** $\nu(x) \geq 0 \ \forall x \in \mathbb{R}^n$ with equality iff $x = 0$.

ii. **(Homogeneity):** $\nu(\alpha x) = |\alpha|\nu(x) \ \forall x \in \mathbb{R}^n \ \alpha \in \mathbb{R}$

iii. **(Triangle inequality):** $\nu(x + y) \leq \nu(x) + \nu(y) \ \forall x, y \in \mathbb{R}^n$

We usually denote $\nu(x)$ by $\|x\|$. Norms are convex functions.

Example: l_p norms

\[
\|x\|_p := \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}, \quad 1 \leq p < \infty \\
\|x\|_\infty = \max_{i=1,\ldots,n} |x_i|
\]

- $P = 1, 2, \infty$ are most important cases

![Graph showing unit balls for l_1, l_2, and l_∞ norms]

- The unit ball of a norm is a convex set.

1.1. **Equivalence of Norms.** All norms on \mathbb{R}^n are comparable, meaning that for any norms $\| \cdot \|_p$ and $\| \cdot \|_q$, there exist constants $\alpha_{p,q}$ and $\beta_{p,q}$ satisfying

\[
\alpha_{p,q}\|x\|_q \leq \|x\|_p \leq \beta_{p,q}\|x\|_q \quad \text{for all } x \in \mathbb{R}^n.
\]

Here are some values of the constants $\alpha_{p,q}$ and $\beta_{p,q}$.

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>$n^{-\frac{1}{2}}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>n^{-1}</td>
<td>$n^{-\frac{1}{2}}$</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>$n^{\frac{1}{2}}$</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>$n^{\frac{1}{2}}$</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
1.2. Continuity and the Weierstrass Theorem.

- A mapping $F : \mathbb{R}^n \to \mathbb{R}^m$ is said to be continuous at the point \mathbf{x} if
 $$\lim_{\|\mathbf{x} - \mathbf{y}\| \to 0} \|F(\mathbf{x}) - F(\mathbf{y})\| = 0.$$

F is said to be continuous on a set $D \subset \mathbb{R}^n$ if F is continuous at every point of D.

- A subset $D \subset \mathbb{R}^n$ is said to be open if for every $x \in D$ there exists $\epsilon > 0$ such that
 $$B_\epsilon(x) = \{ y \in \mathbb{R}^n : \|y - x\| < \epsilon \}.$$

- A subset $D \subset \mathbb{R}^n$ is said to be closed if every point x satisfying
 $$B_\epsilon(x) \cap D \neq \emptyset$$
 for all $\epsilon > 0$, must be a point in D.

- A subset $D \subset \mathbb{R}^n$ is said to be bounded if there exists $m > 0$ such that
 $$\|x\| \leq m$$
 for all $x \in D$.

(Notice: the choice of the norm is irrelevant in the definition.)

- A subset $D \subset \mathbb{R}^n$ is said to be compact, if it is closed and bounded.

- A point $x \in \mathbb{R}^n$ is said to be a cluster point of the set $D \subset \mathbb{R}^n$ if
 $$(B_\epsilon(x) \setminus \{x\}) \cap D \neq \emptyset$$
 for every $\epsilon > 0$.

For example, for the set $D := (0, 1] \cup \{2\}$, the set of cluster points is the set $[0, 1]$.

Theorem 1.1 (Weierstrass Compactness Theorem). A set $D \subset \mathbb{R}^n$ is compact if and only if every infinite subset of D has a cluster point in D.

Next, we recall the notions of the supremum and infimum of a function. To this end, consider a function $f : \mathbb{R}^n \to \mathbb{R}$ and a set $D \subset \mathbb{R}^n$. Define the set of upper bounds

$$U = \{ r \in \mathbb{R} : f(x) \leq r \text{ for all } x \in D \}.$$

One can prove that U is a closed subinterval of the real line, namely we may write $U = [\alpha, +\infty)$ for some α. (Note α can be finite or infinite.) The value α is called the *supremum of f on D*. Intuitively this quantity is the “least upper bound” of f on D. Note that for any $r > \alpha$, there cannot exist a point $x \in D$ satisfying $r = f(x)$ (Why?). On the other hand, when there exists some point \bar{x} in D satisfying $\alpha = f(\bar{x})$, we call α the *maximal value of f on D*, and we say that the *maximum of f on D is attained* at \bar{x}. Moreover, this point \bar{x} is called a *maximizer of f on D*.

The definition of the *infimum of f on D* as the “greatest lower bound” is entirely analogous. Namely the set of lower bounds

$$L = \{ r \in \mathbb{R} : f(x) \geq r \text{ for all } x \in D \}$$

can be shown to be an interval $(-\infty, \beta]$ for some β. This value β is called the *infimum of f on D*. Minimal values, minimizers, and attainment of the minimum are defined analogously.

The following theorem, which we will use extensively, establishes a connection between continuous functions on compact sets and attainment of the minimum and the maximum.
Theorem 1.2 (Weierstrass Extreme Value Theorem). Every continuous function on a compact set attains its extreme values (maximum and minimum) on that set.

1.3. Dual Norms. Let \(\| \cdot \| \) be a given norm on \(\mathbb{R}^n \) with associated closed unit ball \(B \). For each \(x \in \mathbb{R}^n \) define
\[
\| x \|_\ast := \max_{y \in \mathbb{R}^n} \{ x^T y : \| y \| \leq 1 \}.
\]
Since the transformation \(y \mapsto x^T y \) is continuous (in fact, linear) and \(B \) is compact (can you prove this?), Weierstrass’s Theorem says that the maximum in the definition of \(\| x \|_\ast \) is attained. Thus, in particular, the function \(x \mapsto \| x \|_\ast \) is well defined and finite-valued.

We now show that the mapping \(x \mapsto \| x \|_\ast \) is a norm.

(a) It is easily seen that \(\| x \|_\ast = 0 \) if \(x = 0 \). On the other hand, if \(x \neq 0 \), then
\[
\| x \|_\ast = \max \{ x^T y : \| y \| \leq 1 \} \geq x^T \left(\frac{x}{\| x \|} \right) = \frac{\| x \|^2}{\| x \|} > 0.
\]
(b) From part (a), we have \(0 \cdot \| x \|_\ast = 0 = 0 \cdot \| x \|_\ast \). Next suppose \(\alpha \in \mathbb{R} \) with \(\alpha \neq 0 \). Then
\[
\| \alpha x \|_\ast = \max \{ x^T (\alpha y) : \| y \| \leq 1 \} = \max \{ x^T z : 1 \geq \| z \| = \| \frac{z}{\| z \|} \| \} \quad \text{(set } w := \frac{z}{\| z \|})
\]
\[
= \max \{ x^T (|\alpha| w) : 1 \geq \| w \| \} = |\alpha| \| x \|_\ast.
\]
In order to establish the triangle inequality, we make use of the following elementary, but very useful, fact.

FACT: For a function \(f : \mathbb{R}^n \to \mathbb{R} \) and sets \(C \subset D \subset \mathbb{R}^n \), it holds:
\[
\sup_{x \in C} f(x) \leq \sup_{x \in D} f(x).
\]
That is, the supremum over a larger set must be larger. Similarly, the infimum over a larger set must be smaller.

(c) \(\| x + z \|_\ast = \max \{ x^T y + z^T y : \| y \| \leq 1 \} \)
\[
= \max \left\{ x^T y_1 + z^T y_2 : \| y_1 \| \leq 1, \| y_2 \| \leq 1, y_1 = y_2 \right\}
\]
(max over a larger set)
\[
\leq \max \{ x^T y_1 + z^T y_2 : \| y_1 \| \leq 1, \| y_2 \| \leq 1 \}
\]
\[
= \| x \|_\ast + \| z \|_\ast.
\]

FACTS:

(i) \(x^T y \leq \| x \| \| y \|_\ast \) (apply definition)
(ii) \((\| x \|_p)_\ast = \| x \|_q \) where \(\frac{1}{p} + \frac{1}{q} = 1, 1 \leq p \leq \infty \)
(iii) Hölder’s Inequality: $|x^T y| \leq \|x\|_p \|y\|_q$

$$\frac{1}{p} + \frac{1}{q} = 1$$

(iv) Cauchy-Schwartz Inequality:

$$|x^T y| \leq \|x\|_2 \|y\|_2$$

1.4. Operator Norms. For a matrix $A \in \mathbb{R}^{m \times n}$, the p-operator norm is given by

$$\|A\|_p := \max \{ \|Ax\|_p : \|x\|_p \leq 1 \}$$

Example:

$$\|A\|_2 = \max \{ \|Ax\|_2 : \|x\|_2 \leq 1 \}$$

$$\|A\|_{\infty} = \max \{ \|Ax\|_{\infty} : \|x\|_{\infty} \leq 1 \}$$

$$= \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|, \text{ max row form}$$

$$\|A\|_1 = \max \{ \|Ax\|_1 : \|x\|_1 \leq 1 \}$$

$$= \max_{1 \leq j \leq n} \sum_{i=1}^{m} |a_{ij}|, \text{ max column sum}$$

Fact: $\|Ax\|_p \leq \|A\|_p \|x\|_p$.

(a) $\|A\| \geq 0$ with equality iff $A \equiv 0$.

(b) $\|\alpha A\| = \max \{ \|\alpha Ax\| : \|x\| \leq 1 \}$

$$= \max \{ \|\alpha\| \|Ax\| : \|x\| \leq 1 \} = |\alpha| \|A\|$$

(c) $\|A + B\| = \max \{ \|Ax + Bx\| : \|x\| \leq 1 \} \leq \max \{ \|Ax\| + \|Bx\| : \|x\| \leq 1 \}$

$$= \max \{ \|Ax_1\| + \|Bx_2\| : x_1 = x_2, \|x_1\| \leq 1, \|x_2\| \leq 1 \}$$

$$\leq \max \{ \|Ax_1\| + \|Bx_2\| : \|x_1\| \leq 1, \|x_2\| \leq 1 \}$$

$$= \|A\| + \|B\|$$

1.4.1. Condition number. The condition number of a matrix $A \in \mathbb{R}^{n \times n}$ is defined by

$$\kappa(A) := \begin{cases} \|A\| \|A^{-1}\| & \text{if } A^{-1} \text{ exists} \\ \infty & \text{otherwise} \end{cases}$$

Fact: [Error estimates in the solution of linear equations] If $Ax_1 = b$ and $Ax_2 = b + e$, then

$$\frac{\|x_1 - x_2\|}{\|x_1\|} \leq \kappa(A) \frac{\|e\|}{\|b\|}$$

Proof.

$$\|b\| = \|Ax_1\| \leq \|A\| \|x_1\| \Rightarrow \frac{1}{\|x_1\|} \leq \frac{\|A\|}{\|b\|},$$

so

$$\frac{\|x_1 - x_2\|}{\|x_1\|} \leq \frac{\|A\|}{\|b\|} \|A^{-1}(A(x_1 - x_2))\| \leq \|A\| \|A^{-1}\| \frac{1}{\|b\|} \|Ax_1 - Ax_2\| \leq \kappa(A) \frac{\|e\|}{\|b\|}$$

□
1.5. **The Frobenius Norm.** There is one further norm for matrices that is very useful. It is called the Frobenius norm.

Observe that we can identify $\mathbb{R}^{m \times n}$ with $\mathbb{R}^{(mn)}$ by simply stacking the columns of a matrix one on top of the other to create a very long vector in $\mathbb{R}^{(mn)}$. The Frobenius norm is then the 2-norm of this vector. It can be verified that

$$\|A\|_F^2 = \text{tr} A^2.$$

1.6. **Review of Differentiation.**

1) Let $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$ and let $x, d \in \mathbb{R}^n$. If the limit

$$\lim_{t \downarrow 0} \frac{F(x + td) - F(x)}{t} =: F'(x; d)$$

exists, it is called the *directional derivative* of F at x in the direction d. If this limit exists for all $d \in \mathbb{R}^n$ and is linear in the d argument, meaning

$$F'(x; \alpha d_1 + \beta d_2) = \alpha F'(x; d_1) + \beta F'(x; d_2),$$

then F is said to be *Gâteaux differentiable* at x.

2) Let $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$ and let $x \in \mathbb{R}^n$. If there exists a matrix $J \in \mathbb{R}^{m \times n}$ such that

$$\lim_{\|y - x\| \to 0} \frac{\|F(y) - (F(x) + J(y - x))\|}{\|y - x\|} = 0,$$

then F is said to be *Fréchet differentiable* at x and J is said to be its *Fréchet derivative*. We denote J by $J = F'(x)$.

FACTS:

(i) If $F'(x)$ exists, it is unique.

(ii) If $F'(x)$ exists, then $F'(x; d)$ exists for all d and

$$F'(x; d) = F'(x)d.$$

(iii) If $F'(x)$ exists, then F is continuous at x.

(iv) (Matrix Representation)

Suppose $F'(x)$ exists for all x near \overline{x} and that the mapping $x \mapsto F'(x)$ is continuous at \overline{x}, meaning as usual

$$\lim_{\|x - \overline{x}\| \to 0} \|F'(x) - F'(%(x))\| = 0,$$

then the partial derivatives $\partial F_i/\partial x_j$ exist for each $i = 1, \ldots, m$, $j = 1, \ldots, n$ and with respect to the standard basis the linear operator $F'(%(x))$ has the representation

$$\nabla F(%(x)) = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots & \frac{\partial F_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \frac{\partial F_m}{\partial x_2} & \cdots & \frac{\partial F_m}{\partial x_n} \end{bmatrix}^T = \left[\frac{\partial F_i}{\partial x_j} \right]^T$$

where each partial derivative is evaluated at $\overline{x} = (%(x_1, \ldots, x_n))^T$. This matrix is called the *Jacobian matrix* for F at \overline{x}.

Notation: For a function $f : \mathbb{R}^n \to \mathbb{R}$ and the vector $f'(x) := \left[\frac{\partial f_1}{\partial x_1}, \ldots, \frac{\partial f_n}{\partial x_n} \right]$ we write $\nabla f(x) = f'(x)^T$.

(v) If $F : \mathbb{R}^n \to \mathbb{R}^m$ has continuous partials $\partial F_i/\partial x_i$ on an open set $D \subset \mathbb{R}^n$, then F is differentiable on D. Moreover, in the standard basis the matrix representation for $F'(x)$ is the Jacobian of F at x.

(vi) (Chain Rule) Let $F : A \subset \mathbb{R}^n \to \mathbb{R}^k$ be differentiable on the open set A and let $G : B \subset \mathbb{R}^k \to \mathbb{R}^m$ be differentiable on the open set B. If $F(A) \subset B$, then the composite function $G \circ F$ is differentiable on A and

$$(G \circ F)'(x_0) = G'(F(x_0)) \circ F'(x_0).$$

Remarks: Let $F : \mathbb{R}^n \to \mathbb{R}^m$ be differentiable. If $L(\mathbb{R}^n, \mathbb{R}^m)$ denotes the set of linear maps from \mathbb{R}^n to \mathbb{R}^m, then

$$F' : \mathbb{R}^n \to L(\mathbb{R}^n, \mathbb{R}^m).$$

(v) The Mean Value Theorem:

(a) If $f : \mathbb{R} \to \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}$ there exists z between x and y such that

$$f(y) = f(x) + f'(z)(y - x).$$

(b) If $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable, then for every $x, y \in \mathbb{R}$ there is a $z \in [x, y]$ such that

$$f(y) = f(x) + \nabla f(z)^T(y - x).$$

(c) If $F : \mathbb{R}^n \to \mathbb{R}^m$ continuously differentiable, then for every $x, y \in \mathbb{R}$

$$\|F(y) - F(x)\| \leq \left[\sup_{z \in [x,y]} \|F'(z)\| \right] \|x - y\|.$$

Proof of (b): Set $\phi(t) = f(x + t(y - x))$. Then, by the chain rule, $\phi'(t) = \nabla f(x + t(y - x))^T(y - x)$ so that ϕ is differentiable. Moreover, $\phi : \mathbb{R} \to \mathbb{R}$. Thus, by (a), there exists $\overline{t} \in (0,1)$ such that

$$\phi(1) = \phi(0) + \phi'({\overline{t}})(1 - 0),$$

or equivalently,

$$f(y) = f(x) + \nabla f(z)^T(y - x)$$

where $z = x + {\overline{t}}(y - x)$.

1.6.1. The Implicit Function Theorem. Let $F : \mathbb{R}^{n+m} \to \mathbb{R}^n$ be continuously differentiable on an open set $E \subset \mathbb{R}^{n+m}$. Further suppose that there is a point $(\bar{x}, \bar{y}) \in \mathbb{R}^{n+m}$ at which $F(\bar{x}, \bar{y}) = 0$. If $\nabla_x F(\bar{x}, \bar{y})$ is invertible, then there exist open sets $U \subset \mathbb{R}^{n+m}$ and $W \subset \mathbb{R}^m$, with $(\bar{x}, \bar{y}) \in U$ and $\bar{y} \in W$, having the following property:

To every $y \in W$ corresponds a unique $x \in \mathbb{R}^n$ such that

$$(x, y) \in U \quad \text{and} \quad F(x, y) = 0.$$

Moreover, if x is defined to be $G(y)$, then G is a continuously differentiable mapping of W into \mathbb{R}^n satisfying

$$G(\bar{y}) = \bar{x}, \quad F(G(y), y) = 0 \ \forall \ y \in W, \quad \text{and} \quad G'(\bar{y}) = -(\nabla_x F(\bar{x}, \bar{y}))^{-1}\nabla_y F(\bar{x}, \bar{y}).$$
1.6.2. Some facts about the Second Derivative. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. Then ∇f is a mapping from \mathbb{R}^n to \mathbb{R}^n. The second derivative of f is by definition the first derivative of the gradient mapping $x \mapsto \nabla f(x)$, if it exists, that is the second derivative of f at x is the mapping $\nabla^2 f(x) := \nabla[\nabla f](x)$.

(i) If $\nabla^2 f(x)$ exists and is continuous at x, then with respect to the standard basis, it is given as the matrix of second partial derivatives:

$$\nabla^2 f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right]$$

Moreover, $\frac{\partial f}{\partial x_i \partial x_j} = \frac{\partial f}{\partial x_j \partial x_i}$ for all $i, j = 1, \ldots, n$. The matrix $\nabla^2 f(x_2)$ is called the Hessian of f at x. It is a symmetric matrix.

(ii) Second-Order Taylor Theorem: If $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable on an open set containing the interval $[x, y]$, then there is a point $z \in [x, y]$ such that

$$f(y) = f(x) + \nabla f(x)^T(y-x) + \frac{1}{2}(y-x)^T \nabla^2 f(z)(y-x).$$

We also obtain

$$\|f(y) - (f(x) + \nabla f(x)(y-x))\| \leq \frac{1}{2} \|y-x\|^2 \sup_{z \in [x,y]} \|\nabla^2 f(z)\|.$$

1.6.3. Integration. Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable and set $\varphi(t) := f(x + t(y-x))$ so that $\varphi : \mathbb{R} \to \mathbb{R}$. Then

$$f(y) - f(x) = \varphi(1) - \varphi(0) = \int_0^1 \varphi'(t) \, dt = \int_0^1 \nabla f(x + t(y-x))^T(y-x) \, dt$$

Similarly, for a mapping $F : \mathbb{R}^n \to \mathbb{R}^m$, we have

$$F(y) - F(x) = \left[\int_0^1 \nabla F_1(x + t(y-x))^T(y-x) \, dt \right]$$

$$\vdots$$

$$= \left[\int_0^1 \nabla F_m(x + t(y-x))^T(y-x) \, dt \right]$$

$$= \int_0^1 \nabla F(x + t(y-x))(y-x) \, dt$$

1.6.4. More Facts about Continuity. Let $F : \mathbb{R}^n \to \mathbb{R}^m$.

- We say that F is continuous relative to a set $D \subset \mathbb{R}^n$ if for every $x \in D$ and $\epsilon > 0$ there exists a $\delta(x, \epsilon) > 0$ such that

$$\|F(y) - F(x)\| \leq \epsilon \text{ whenever } \|y-x\| \leq \delta(x, \epsilon) \quad \text{and} \quad y \in D.$$

- We say that F is uniformly continuous on $D \subset \mathbb{R}^n$ if for every $\epsilon > 0$ there exists $\delta(\epsilon) > 0$ such that

$$\|F(y) - F(x)\| \leq \epsilon \text{ whenever } \|y-x\| \leq \delta(\epsilon) \quad \text{and} \quad x, y \in D.$$

FACT: If F is continuous on a compact set $D \subset \mathbb{R}^n$, then F is uniformly continuous on D.

We say that F is Lipschitz continuous on a set $D \subset \mathbb{R}^n$ if there exists a constant $K \geq 0$ such that
\[
\|F(x) - F(y)\| \leq K\|x - y\|
\]
for all $x, y \in D$.

FACT: Lipschitz continuity implies uniform continuity.

Proof. Set $\delta = \epsilon/K$. \hfill \Box

EXAMPLES:

1. $4(x) = x^{-1}$ is continuous on $(0, 1)$, but it is not uniformly continuous on $(0, 1)$.
2. $f(x) = \sqrt{x}$ is uniformly continuous on $[0, 1]$, but it is not Lipschitz continuous on $[0, 1]$.

FACT: If ∇F exists and is continuous on a compact convex set $D \subset \mathbb{R}^m$, then F is Lipschitz continuous on D.

Proof. Mean value Theorem:
\[
\|F(x) - F(y)\| \leq (\sup_{z \in [x,y]} \|\nabla F(z)\|)\|x - y\|.
\]
Apply Weierstrass Compactness Theorem to ∇F. \hfill \Box

Lipschitz continuity is almost but not quite a differentiability hypothesis. The Lipschitz constant provides bounds on rate of change.

1.6.5. **Quadratic Bound Lemma.** Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be such that ∇F is Lipschitz continuous on the convex set $D \subset \mathbb{R}^n$. Then
\[
\|F(y) - (F(x) + \nabla F(x)(y - x))\| \leq \frac{K}{2}\|y - x\|^2
\]
for all $x, y \in D$ where K is a Lipschitz constant for ∇F on D.
Proof. \[F(y) - F(x) - \nabla F(x)(y - x) = \int_0^1 \nabla F(x + t(y - x))(y - x)dt - \nabla F(x)(y - x) \]
\[= \int_0^1 [\nabla F(x + t(y - x)) - \nabla F(x)](y - x)dt \]
\[\|F(y) - (F(x) + \nabla F(x)(y - x))\| = \| \int_0^1 [\nabla F(x + t(y - x)) - \nabla F(x)](y - x)dt \|
\leq \int_0^1 \|\nabla F(x + t(y - x)) - \nabla F(x)\| \|y - x\| dt
\leq \int_0^1 K t\|y - x\|^2 dt
= \frac{K}{2} \|y - x\|^2. \]

1.6.6. Some Facts about Symmetric Matrices. Let \(H \in \mathbb{R}^{n \times n} \) be symmetric, i.e. \(H^T = H \)

(1) There exists an orthonormal basis of eigen-vectors for \(H \), i.e. if \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \) are the \(n \) eigenvalues of \(H \) (not necessarily distinct), then there exist vectors \(q_1, \ldots, q_n \) such that \(\lambda_i q_i = H q_i \), \(i = 1, \ldots, n \) with \(q_i^T q_j = \delta_{ij} \). Equivalently, there exists an orthogonal transformation \(Q = [q_1, \ldots, q_n] \) \((Q^T Q = I) \) such that
\[H = Q \Lambda Q^T \]

where \(\Lambda = \text{diag} [\lambda_1, \ldots, \lambda_n] \).

(2) \(H \in \mathbb{R}^{n \times n} \) is positive semi-definite, i.e.
\[x^T H x \geq 0 \] for all \(x \in \mathbb{R}^n \),
if and only if all the eigenvalues of \(H \) are nonnegative.