This homework set will focus on the optimization problem

\[Q = \min_{x \in \mathbb{R}^n} \frac{1}{2} x^T H x + g^T x , \]

where \(H \in \mathbb{R}^{n \times n} \) is symmetric and \(g \in \mathbb{R}^n \).

(1) Each of the following functions can be written in the form \(f(x) = \frac{1}{2} x^T H x + g^T x \) with \(H \) symmetric. For each of these functions what are \(H \) and \(g \)

(a) \(f(x) = x_1^2 - 4x_1 + 2x_2^2 + 7 \)
(c) \(f(x) = x_1^2 - 2x_1x_2 + \frac{1}{2}x_2^2 - 8x_2 \)
(d) \(f(x) = 2(x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - 1)^2 \)
(e) \(f(x) = x_1^2 + 16x_1x_2 + 4x_2x_3 + x_2^2 \)

(2) For \(a, b \in \mathbb{R} \), consider the matrix

\[
H = \begin{bmatrix}
2 & a & 0 \\
a & 2 & b \\
0 & b & 2
\end{bmatrix}.
\]

(a) Compute the eigenvalues of \(H \) as functions of \(a \) and \(b \).
(b) For what values of \(a \) and \(b \) is \(H \) positive definite.
(c) For what values of \(a \) and \(b \) is \(H \) positive semi-definite.
(d) For what values of \(a \) and \(b \) is \(H \) negative semi-definite.
(e) For what values of \(a \) and \(b \) is \(H \) negative definite.
(f) For what values of \(a \) and \(b \) is \(H \) indefinite.

(3) Consider the matrix

\[
H = \begin{bmatrix}
4 & 3 & 2 \\
3 & 9 & 3 \\
2 & 3 & 4
\end{bmatrix}.
\]

(a) Compute the eigenvalues of \(H \).
(b) Compute and orthonormal basis of eigenvectors for \(H \).
(c) Compute the eigenvalue decomposition of \(H \).

(4) For each of the matrices \(H \) and vectors \(g \) below determine the optimal value in \(Q \). If an optimal solution exists, compute the complete set of optimal solutions.

(a)

\[
H = \begin{bmatrix}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{bmatrix} \quad \text{and} \quad g = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}.
\]

(b)

\[
H = \begin{bmatrix}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & -2
\end{bmatrix} \quad \text{and} \quad g = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}.
\]

(c)

\[
H = \begin{bmatrix}
5 & 2 & -1 \\
2 & 1 & -1 \\
-1 & -1 & 2
\end{bmatrix} \quad \text{and} \quad g = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}.
\]
(5) Consider the matrix $H \in \mathbb{R}^{3 \times 3}$ and vector $g \in \mathbb{R}^3$ given by

$$H = \begin{bmatrix}
1 & 4 & 1 \\
4 & 20 & 2 \\
1 & 2 & 2
\end{bmatrix} \quad \text{and} \quad g = \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}.$$

Does there exists a vector $u \in \mathbb{R}^3$ such that $f(tu) \uparrow \infty$? If yes, construct u.

(6) Let $H \in \mathbb{R}^{n \times n}$ be symmetric with eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$. For $\gamma_1, \gamma_2 \in \mathbb{R}$ with $\gamma_1 \leq \gamma_2$, show that $\gamma_1 \leq \lambda_j \leq \gamma_2$ for all $j = 1, 2, \ldots, n$ if and only if

$$\gamma_1 \|u\|_2^2 \leq u^T Hu \leq \gamma_2 \|u\|_2^2$$

for all $u \in \mathbb{R}^n$.