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m Modeling with Piecewise linear-quadratic functions
m PLQ class, theory, and calclulus (with J.V. Burke and G. Pillonetto)

m Applications with IPsolve
m Dynamic systems inference (with J.V. Burke, G. Pillonetto, and B. Bell)

m Quantile Huber (with A. Lozano, R. Luss, A. Kambadur)

Sparse difference graphs (with D. Orban, H. Liu, R. Vanderbei, C.
Eisenach, Y. Liu).

System identification (with J.V. Burke and G. Pillonetto)

m Meta-parameters (with P. Zheng, K. Ramamurthy, and JJ Thiagarajan).

m Code: https://github.com/saravkin/IPsolve
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https://github.com/saravkin/IPsolve

Optimization in Modeling

min V(Ax —b) + J(Gz — w)
st. zedX.

m Data misfit V: good results in the face of large measurement errors
m Regularization J: prior information e.g. sparsity or process model
m Constraints: use information about feasible region

Here, V', J can come from a large class of piecewise linear quadratic
(PLQ) penalties.
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PLQ penalties in practice

Application Objective PLQs
Regression | Az — b||? 03
Robust regression p(Az —b) huber
Lasso | Az — b]|% + ||z 03+ 0
SVM H(1 — Az) + 3|wl]? hinge loss + /3
CVaR ~a—g H (Az — ae) + a+da(z)  hinge + aff + const
System ID |z — ®x|® + 42T Q' 0%+ 03
Kalman smoother  ||Hz — z||%_, + |Gz — w||§2,1 03 + 03

Let’s take a closer look at these PLQs, and their conjugates.
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Quadratic

1 1
Figure: 2’ = sup {ux — —uz}.
2 wER 2

m linear and nonlinear regression [Fre09, SWO03]
m inverse problems [Tik].

m Features: symmetric, smooth, quadratic tail growth.
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Figure: |z| = sup {uz}.
u€[—1,1]

m machine learning and compressed sensing [HT90, EHJT04, Don06],
m image denoising [SED05, MES08, MSNW10],
m seismic image processing [HH08, NKK*10, HFY12, MWLH12].

m Features: symmetric, nonmsooth, linear tail growth
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Figure: he(z) = sup {u(z —€)}.
u€(0,1]

m support vector classifiers [EPP00, PV98, SSWB00].
m Conditional Value at Risk and Superquantiles [RU00]

m Features: 1-sided, nonmsmooth, linear tail growth.
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quantile loss

Figure: ¢-(x) = sup  {uz}.
u€l[—7,(1-7)]
m heterogeneous datasets [KB78, Buc94]
m computational biology [ZY08]
m survival analysis [KGO1]
m economics [KH01, Koe05]

m Features: asymmetric, nonsmooth, linear tail growth
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. 1 5
F t he = — = .
igure: h.(z) ues[,t_lgﬁ] {ux U }
m robust regression [Hub04, MMY06, BNO7, DH81, Cla85, LS98]
m Kalman smoothing [ABP13a]
m System identification [ABP13b]
m robust PCA and robust matrix completion [AKM*14, ABD"16]

m Features: symmetric, smooth, linear tail growth.
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quantile huber loss

Figure: h; .(z) = sup {ux — —u }

w€[—k1,k(1—7)]

m alternative to the quantile penalty in the high-dimensional
setting [AKLL14]

m We will come back to this example

m Features: asymmetric, smooth, linear tail growth.
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vapnik loss

Figure: p.(x) = sup {< [_11] T — [j ,u>}.
w€[0,1]2

m support vector regression (SVR) [Vap98, HTF01, SSWB00, SS01]

m Features: ‘deadzone’, symmetric, nonsmooth, linear tail growth.
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elastic net

. 1 1 (0 0
Figure: Tr)= sup T, U ) — —u U .
o) u€[0,1]xR {< [1] > 2 [O 1] }

m sparse regularization with correlated
predictors [ZHO05b, ZH05a, LL*T10, DMDVR09].

m Features: symmetric, nonsmooth at origin, quadratic tail growth.
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PLQ Functions (Rockafellar & Wets)

Explicit encoding of PLQ functions
Define p(C,c, M,b, B;-) : R* — R as

1
p(C,c,b,B,M;y) = sup {<u7b+By> - 2<u,MU>}

Cu<c

M € R™*™ is a symmetric positive semidefinite matrix.
b+ By is an injective affine transformation with B € R™*".
{u|Cu < ¢} C R™ is a polyhedral containing the origin.

The encoding makes it possible to build general problems from

component parts (V, J, affine compositions).
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PLQ Representation Calculus

m (Addition)Given two PLQ penalties
pler, Cr, Br,bi, Misy)  and  p(c2, C2, Ba, ba, Masy)

their sum is also a PLQ penalty p(c, C, B, b, M;y) with

_ C1 o Cl 0 _ bl o B1 _ M1 0
S (O R S A B )
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PLQ Representation Calculus

m (Addition)Given two PLQ penalties
pler,Cr, Bi,bi, Mysy)  and  p(ca, Co, Ba, by, Mo y)
their sum is also a PLQ penalty p(c, C, B, b, M;y) with
_ C1 o Cl 0 _ bl o B1 _ M1 0
St R O R (Y R S o R WY
m (Affine composition) Given a PLQ penalty p(c, C,b, B, M;y), we have

p(Pw—p)=p(c,C’,b—Bp,BP,M,y) .
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PLQ Representation Calculus

m (Addition)Given two PLQ penalties
plc1, Cr, B1, by, Mysy)  and  p(cz, Ca, Ba, ba, Ma;y)
their sum is also a PLQ penalty p(c, C, B, b, M;y) with
P R R R BT I R
m (Affine composition) Given a PLQ penalty p(c, C,b, B, M;y), we have
p(Pz —p) = p(c,C,b— Bp, BP, M:y) .
m (Smoothing) Smoothing with quadratics preserves PLQ.

py(e,C, M, b, Biy) = p(e, C, M + 71,0, By y)
Moreau envelope (Burke & Hoheisel 2013):

e p(c,C, M,b, B;y) = p(c,C, M +~yBBT b, B;y)
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PLQ Optimization with constraints

Consider now the minimization problem

min p(c, C, b, B, M;y) st Ay <a.
y

Introduce slack variables s and r:
Cu+s=c, Ay+r=a.

Let g, w be dual variables corresponding to these constraints.  The
KKT system (optimality conditions) is given by

= BTu+ ATw

By — Mu—CTq+b
Cu+s—c
Ay+r—a

4isi Vi, ¢, >0

= wyr; Vi, w,r>0.

coococoo
I

From here, implement an interior point method (see Kojima et al., 1991;
Nemirovskii and Nesterov, 1994; Wright, 1997.)
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IPsolve: Interior Point via Conjugate Representation

Interior point methods relax the complementarity conditions:
qisi = [, Wity = [,

and p is aggressively taken to 0, so at the end the true KKT system is
(nearly) satisfied. The p-relaxed KKT system looks like this:

s+ Cu—c
QS1 —pl
FM(G q, U, T, W y) = ByiM’U;Ai CTq+b
i ) ) ) k) r + y —a
M WR1 — pul
BTu+ ATw
To solve, take damped Newton iterations: FI(})AZ = —F,, where
I 0 C 0 0 0
Q S 0 0 0 0
T
F) . 0o —-C -M 0 0 B
= 0 0 0 I 0 A
0 0 0 W R 0
0 0 BT 0 AT o0

We can exploit problem structure to make each Newton step efficient.
Aravkin, Burke, Pillonetto, JMLR 2013
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Exploiting Sparsity of Conjugate Representation:

Instead, can put ¢ — C'u directly into barrier, then take
¢ = p/(ci —(Ci,w)) ,  wiri =,

The new p-relaxed KKT system looks like this:

gdiag(c — Cu) — pl
By— Mu—CTq+b

F‘p,(q7 u, T, w,y) = WR1 — pl
——— r+ Ay —a
Z BTu+ ATw
To solve, take damped Newton iterations: F,(})Az = —F,, where
diag(c— Cu) —-QCT 0 0 0
0 -¢cT -M 0 B
FV = 0 0 W R 0
0 0 I 0 A
0 BT o AT o

Smaller system, maintains feasibility of conjugate variables.
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Exploiting problem structure

m Each IP iteration requires a matrix solve.

m Reduced the matrix F(!) to upper triangular form:

D —-QcT o 0 0
0 -T 0 0 B

0 0 w R 0 )
0 0 0 —RW! AT

0 0 0 0 BTT 'B+ AWR™'AT

T=M+0CQD'CT

m D, T,Q,R,W sparse (diagonal).

m B contains the full linear model; A the imposed constraints.

m We are guaranteed Cu < ¢ at each iteration.
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Applications



Dynamic Systems Inference

m Kalman filters and smoothers are

m ubiquitous in navigation systems (planes, space, robots, UAV's)
used as a first step for e.g. 3D model reconstruction (NASA)
important for climate/weather models (ensemble KF)

used in PK/PD modelling to track drug concentrations

used in finance (trend filtering)

connected to many research areas, including belief
propagation/graphical models, functional reconstruction, smoothing
splines, dynamic linear models, stochastic differential equations

m Original Kalman filter paper was written in 1960, and the topic still
continues to be a hot research area for engineering, statistics,
optimization, PDE, SDE, and many applied communities.

m In 2009, Rudolf Kalman received the National Science Award from
President Obama for the Kalman filter.
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Graphical Overview of Dynamic Systems

m Goal: to obtain estimates on states {x} given measurements {z;}
m State evolution models z; = gg(zp—_1) + wy.
m Initialization: x1 = 2o + w;.

m Measurement model: z, = hi(zx) + v

Xo =91 X1 —0go—» Xo |--------- any -* | Xn States

hy hy hn

@ @ @ Measurements
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Example : tracking a smooth signal

Brer| _ [T Of fdn| o wi(1) Ox = o2 At A2
arir| At T |ze| T |we@)] 0 9T % A2 A3/3]
2k = [0 1} |:xk:| +ovr, Ri= (fg.
k
Method works well! But what would you do if | told you the signal was

always between [—1,1]7

PLQ Modeling Aleksandr Y. Aravkin 24



Example 2: impulsive disturbances in DC motor

L2-opt: output data and estimate L2-opt: input estimate

3 1
—True Lt h — True
2.5 - - -Estimate - - -Estimate
0.8
2
0.6
1.5
1 0.4]
0.5 0.2
o5 TN e TS
-1 P -0.2
15 . . . _0.4 ; H H
0 50 100 150 200 0 50 100 150 200

m State: angular velocity, angle of motor shaft.
m Input u: applied torque (known).
m disturbances d: impulsive, unknown.

0.71 0 11.8
m Dynamics: Thit = < 0.08 1 )z’“ + < 0.63 ) (ue +di),

ZkZ( 0 1 ):ck+ek
m Right panel: Best linear estimator of impulsive disturbances d; is
poor. Need a better .J to model d;.
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Example 3: measurement outliers

L2-nom: output data and estimate L2—-opt: output data and estimate

6o 3 5

13 6F © ) 5 S
i | W —True —True
I K " - - -Estimate ° - - -Estimate

0 0
—2r° " 1 _ob-° ]
wo o
M
H
_4 i ! 1 _4 ]
°
—6ko oim E| —6ko oim 0.0 B
0 50 100 150 200 0 50 100 150 200

m Outliers: 10% of measurements are corrupted by outliers.
m Left: Gaussian model with nominal variance (outliers pull estimate)
m Right: Best linear estimate (cannot track signal well)

® Main point: We need a better V' to model measurement errors.
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Full-state formulation

I 0
R = diag({Rx}) x = vec({zx}) a1
Q = diag({Qr}) n = vec({Zo, 0, ...,0}) G= |7 _
H = diag({H}) z =vec({z1,22,...,2n}) r G (1)

. 1 1
mmlnf(ﬂﬁ) = §HH$ — 2| + §HG$ - 77H2Q*1 .
Take gradient, set it equal to O:

(H'R'H+G'Q 'Gz=H R '24+G"Q !y

Classic algorithms (KF, RTS, MF, M) are easily interpretable as linear
algebraic operations on this system.

Aravkin, Bell, Burke, Pillonetto, http://arxiv.org/abs/1303.5237
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KalmanDemo: PLQ Smoothers

%o 91 X 92 Xp |-----m--- [N R

© © ©

m We consider the entire class of PLQ smoothers where we use general
PLQ penalties for process J and measurement V.

m Solve the optimization problem

min J(p—Gz)+V(z—Hzx) .

m We also impose constraints x € X’ on the state.
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Complexity preserved by interior point

IP iterations require inverting following linear system:

D —-QCcT o 0 0

0o -T 0 0 B

0 0 w R 0 ,
0 0 0 —RW™! AT

0 0 0 0 BTT'B+ AWR AT

: QG
For Kalman smoothing model, we have B = R-12p |-

So Schur complement is block tridiagonal PD:
BTT-1B — [GTQfT/ZTl—lel/2G + HTRfT/2T2—1R71/2H]

Constraints: AW R~ AT also block tridiagonal if (...)?

So, we preserve classical complexity results, of O(n®N) per iteration.
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Constrained results

14 0 2 4 6 8 10 12

Two examples of linear constraints, using E% for J and V. Black solid line
is true signal, black dash-dot line is unconstrained Kalman smoother, and
blue dashed line is the constrained Kalman smoother.
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DC rotor results

LASSO-CV: input estimate L1-nom: output data and estimate
1 3 g 5 g

—e True 6 —True

- - -Estimate o - - -Estimate
0.8

4 B

0.6
0.4
0.2

_gto o®

50 100 150 200 0 50 100 150 200

m Left: impulsive disturbance. Use /¢, for J, 6% for V.
m Right: outliers. Use K% for J, £1 or huber for V.
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High dimensional sparse regression

m Genomic data: 206 cases, 18K locations (SNPs).
m Question: which genetic locations (SNPs) are associated with disease?

m Use sparsity (¢ for .J), and quantile penalty for V.

uuuuuuuuuuuuuuuuuuu

(a) 10% Quantile (b) 20% Quantile (¢) 50% Quantile

m Figure: top SNPs obtained by sparse QR on Alzheimers data —
persistent SNPs include a hotspot associated with APOE gene.
m Background references for QR:

m Koenker, R. and Bassett, G, Econometrica, pp. 33-50, 1978.
m Koenker, R. and Geling, O. J. ASA, 96:458-468, 2001.
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Quantile vs. Quantile Huber

m Convex and nonconvex sparsity formulations:

min p, (b — Az) + Al
min p, (b — Az) st |zfjo < k.

m Run a series of experiments for ¢ = 0.1,0.2,...,0.9.

m We propose smooth (huber) quantile loss (why?).
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Quantile vs. Quantile Huber

m Convex and nonconvex sparsity formulations:

min p, (b — Az) + Al
min p, (b — Az) st |zfjo < k.

m Run a series of experiments for ¢ = 0.1,0.2,...,0.9.
m We propose smooth (huber) quantile loss (why?).

m We solve £y with a generalized OMP, with ipSolve as subroutine.
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Generalized OMP

m Initialization: r = b, S =

mFor: j=1,... k
r) =b— Agat)
Vp (r(j)) iy
(Maximum projection onto generalized residuals)
S0 — gG-1) {igy}

’L(j) = arg miax

m Refitting Step: ipSolve

() — : _
T argz:zig?{;zS(j) p(b— Ax)
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Results for simulated experiment

F1 Score
F1 Score

L1-QHR — L0-QHR
= L1-QR e 4 - - L-GR
L1-QHR
L1-QR
o ] o
2 2 |
. . . . . T T T
20 40 60 80 20 40 60 80
Quantile Quantile
n = 300, p = 400 n = 300, p = 800

_ o PrxRec _ _tp _tp
== 2Pr—i—Rec.’ Pr=gim Ree=gpim-

m Huber quantile is more accurate than quantile.

m /y formulations have superior accuracy to /5.

Aravkin, Kambadur, uss, ICDM 2014
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Large-scale Approach



Inexact methods for linear systems

m We would like inexact methods to handle very large problems, and
problems where we can only use matrix-vector products.

m Specialized methods exist for specific applications, mostly for sparse
optimization (Koh et al. 2007, Fountoulakis et. al. 2013)

m These methods exploit special structure of 1-norm regularizer to
develop efficient preconditioners.

m We want to develop inexact methods for our linear system!

PLQ Modeling Aleksandr Y. Aravkin 38



Linear system from conjugate formulation

m Recall the key step is solving F,(})Az = —F,, where

diag(c — Cu) —-QCT 0 0 0

0 -¢cT -M 0 B

F{V) = 0 0o W R 0
0 0 I 0 A

0 BT 0o AT 0

m Most structures here are extremely sparse (some diagonal).
m B encodes linear model, A is the constraint matrix.

m System is special, since we have primal, conjugate, and dual variables.
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A simple approach

m Start with reduced F(:

D —QCcT o 0 0

0 -T 0 0 B

0 0 w R 0 )
0 0 0 —RW™! AT

0 0 0 0 BTT !B+ AWR AT

m There are many ways to solve original system, this is just one of them.

m Strategy: solve lower block approximately, then get exact updates for
the other variables.

m For some ML problems, IP iterations require remarkably few linear
solver iterations.

PLQ Modeling Aleksandr Y. Aravkin 40



Sparse difference graphs

m Data: sample covariance X1, Yo, AY = Xy — ¥4,
m Target: sparse estimate of X = ©; — Oy = %7 — 25
m Key identity:
Y1(0; —0)8, =51(B7 -2 )8 =8, — % = AXL
m Formulation:
H}}H I1X |1 st 21X 8 — Al < A
m )\ controls fidelity to observed data.

m Vectorization: vec(X1XY2) = (32 ® 1)z.
m Special structure: matrix vector products are O(n®), not O(n*).

m This is a linear program (!) but using IPsolve and block structure, we
have matrix-free implementation.
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COBRE lllustration

m 72 healthy and 74 Alzheimers' brains are compared

m lower A\ means tighter constraints, less sparsity (A = 0.5 shown )

m can potentially be used as a diagnostic tool to detect differences
between healthy and unhealthy brains

Joint work with C. Eisenach, H. Liu, Y. Liu, D. Orban, R. Vanderbei
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IPsolve vs. CPEX

m COBRE dataset has covariance matrices that are 116 x 116.

m This gives primal problem dimensions of 13456 x 13456.

) 09]08[07]06 |05
Time (s) | 23 | 28 | 70 | 113 | 276

Table: Average runtime for IPSolve in seconds for varying levels of \.

) 090 08 [07 |06 |05
Time (s) | 580 | 659 | 573 | 565 | 575

Table: Runtime for CPLEX in seconds for varying levels of A.

m Approach scales for larger (synthetic) matrices, and the problem is
always more difficult for higher fidelity requirements.
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Conclusion

m PLQ penalties appear in a range of data science, high dimensional
inference, and machine learning problems.

m We can use conjugate representations of these penalties to design
easily customizable interior-point methods.

m Features of PLQ models (smoothness, asymmetry, tail growth) with
constraints capture a wide range of useful models for applications.

m Some current work:
m Semi-parametric inference (e.g. quantile parameter) (Peng, Karthik, JJ)
Convex-composite extensions (Jim, Dima)
Splitting methods for PLQ (Damek Davis)
Robust CVaR (Xin Chen)
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Congratulations, Jim, and thank you!!
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