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Introduction



Problem

There are many circumstances where variables are defined
implicitly and we need to calculate derivatives of functions that
depend on these variables.

I The implicit function approach to equality constrained
optimization; e.g., applied to PDE constrained parameter
estimation.

I Nonlinear mixed effects models where the optimal random
effects are an implicit function of the fixed effects and the
fixed effects objective depends on these random effects.

I More generally consider bilevel programming where the
current point is such that the implicit function theorem
applies to inner variables, and corresponding Lagrange
multipliers, as a function of the outer variables.
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Approach

If the implicitly dependent variables are defined by nonlinear
equations, they are usually solved by an iterative procedure.

I The naive approach it to apply AD to the iterative procedure.
I An AD method that computes these derivatives for any order,

using the implicit function instead of the iterative procedure,
can be found in [WWS10, Section 4.1].

I We consider the Newton Step Method for computing
derivatives of functions that are expressed in terms of the
implicitly dependent variables.

I This enables one to easily use forward or reverse mode and
sparsity when calculating derivatives of functions that depend
on implicitly defined variables.
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Newton Step Theorem



Notation

Y (x)
We are given a vector valued function L : Rn × Rm → Rm, and
define the implicit function Y (x) by

L(x , Y (x)) = 0 .

Ly (x , y)
Define the matrix valued function Ly : Rn × Rm → Rm×m by

Ly (x , y)[i ,j] =
∂L(x , y)[i]

∂y[j]
; .



Notation

Y (x)
We are given a vector valued function L : Rn × Rm → Rm, and
define the implicit function Y (x) by

L(x , Y (x)) = 0 .

Ly (x , y)
Define the matrix valued function Ly : Rn × Rm → Rm×m by

Ly (x , y)[i ,j] =
∂L(x , y)[i]

∂y[j]
; .



Notation

|p|, ∂pf (x)
Given a matrix valued function f : R` → Rn×m, and a multi-index
p ∈ Z`

+, we use the notation |p| = p[1] + . . . + p[`] and
∂pf : R` → Rn×m is defined by

∂pf (x) = ∂p[1]

∂xp[1]
[1]

. . .
∂p[`]

∂xp[`]
[`]

f (x) .

N(Z)(x)
Given an arbitrary function Z : Rn → Rm, the corresponding
Newton step N(Z ) : Rn → Rm is defined by

N(Z )(x) = Z (x)− Ly (x , Z (x))−1L(x , Z (x)) .
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Theorem

Notation
Fix x̄ ∈ Rn, define N0(x) to be the constant function
N0(x) = Y (x̄). For k = 1, . . . , define Nk : Rn → Rm by
Nk(x) = N(Nk−1)(x).

Conclusion
It follows that for any multi-index p ∈ Zn

+, and for any k ≥ |p|,

∂pY (x̄) = ∂pNk(x̄) .



Theorem

Notation
Fix x̄ ∈ Rn, define N0(x) to be the constant function
N0(x) = Y (x̄). For k = 1, . . . , define Nk : Rn → Rm by
Nk(x) = N(Nk−1)(x).

Conclusion
It follows that for any multi-index p ∈ Zn

+, and for any k ≥ |p|,

∂pY (x̄) = ∂pNk(x̄) .



Remarks



One Newton Step

Well Known
This theorem is well know for the case k = 1; e.g., [Gil92, eq. 15].

Standard N1(x)
The reference above and the theorem use the following definition

N1(x) = Y (x̄)− Ly (x , Y (x̄))−1L(x , Y (x̄)) .

This requires differentiating the inversion when computing N(1)
1 (x).

Alternate N1(x)
The theorem also holds with the alternate definition

N1(x) = Y (x̄)− Ly (x̄ , Y (x̄))−1L(x , Y (x̄)) .

This avioids differentiating the inversion when computing N(1)
1 (x).
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Checkpointing

In General
Often an procedure can be divided into steps where a reduced set
of variables are input to each step. Checkpointing [AW00] is a
technique for reducing the memory required by AD in this case.

One Newton Step
When computing Nk(x) for k > 1, we can divide the computaiton
into Newton steps

(x , y)→
(

x , y − Ly (x , y)−1L(x , y)
)

.

We only need to record one such step when computing derivatives
of Nk(x) for any k.

Example Package
The cppad mixed packages takes advantage of this technique
[Bel16].
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Nonlinear Mixed Effects Models



Backgound

Model
We use x to denote the fixed effects, y to denote the random
effects, and z to denote the data in a non-lienar mixed effects
model. We are given a representation for the densities p(z |x , y),
p(y |x), and p(x).

Problem

minimize −
∫

y
p(z |x , y) p(y |x) p(x) dy w.r.t x

Often the dimension of y is large and the Hessian w.r.t y is sparse.

Approximating Objective
The Laplace approximation for the objective above is expressed in
terms of the Hessian of the integrand w.r.t y . Its use has increased
with the advent of good AD techniques.
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Laplace Approximation
H(x , y)
H(x , y) = −p(z |x , y) p(y |x) p(x) .

Hy ,y (x , y)
We use Hy ,y (x , y) to denote the Hessian of H .w.r.t y and we
assume that it is always positive definite.

Y (x)
We use Y (x) for the argmin of H(x , y) with respect to y ; i.e.,

L(x , Y (x)) = Hy (x , Y (x))T = 0 .

Approximate Objective
The Laplace approximation of the objective is

1
2 log det (Hy ,y (x , Y (x))) + H(x , Y (x)) .
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Approximate Objective
Motivation
The Hessian of the approximate objective can be used during
optimization. It can also be used as a approximation of the the
inverse of the covariance for the optimal solution.

Optimal Value Component
H(x , Y (x)) is an optimal value function and has the same Hessian
w.r.t to x as its one step representation ( [BB08, Theorem 2] ):

H(x , N1(x))

Bilevel Programming Component
As direct application of the theorem in the talk,

1
2 log det (Hy ,y (x , Y (x)))

has the same Hessian .w.r.t x as the two step approximation

1
2 log det (Hy ,y (x , N2(x)))
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Lemma



Incremental Multi-Index Sequence

Fix p ∈ Zn
+, the multi-index in the theorem, and select an

incremental sequence

{P(0), P(1), · · · , P(|p|)} ⊂ Zn
+

such that:
I P(0) = 0,

I P(|p|) = p,
I P(j + 1)− P(j) ≥ 0,
I |P(j + 1)− P(j)| = 1.

It follows that |P(j)| = j .
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Notation
Ly ,y [k](x , y)
Define the matrix valued function Ly ,y [k] : Rn × Rm → Rm×m by

Ly ,y [k](x , y)[i ,j] = ∂L(x ,y)[i,j]∂y[k]

f (k)

For a vector valued function f : Rn → Rm, and a k ≤ |p|, define
f (k) : Rn → Rm

f (k)(x) = ∂P(k)f (x) .

L(k)
x (x , y)

Define the vector valued function L(k)
x : Rn × Rm → Rm by

L(k)
x (x , y) = ∂P(k)L(x , y)

where the paritials are w.r.t. the x components.



Notation
Ly ,y [k](x , y)
Define the matrix valued function Ly ,y [k] : Rn × Rm → Rm×m by

Ly ,y [k](x , y)[i ,j] = ∂L(x ,y)[i,j]∂y[k]

f (k)

For a vector valued function f : Rn → Rm, and a k ≤ |p|, define
f (k) : Rn → Rm

f (k)(x) = ∂P(k)f (x) .

L(k)
x (x , y)

Define the vector valued function L(k)
x : Rn × Rm → Rm by

L(k)
x (x , y) = ∂P(k)L(x , y)

where the paritials are w.r.t. the x components.



Notation
Ly ,y [k](x , y)
Define the matrix valued function Ly ,y [k] : Rn × Rm → Rm×m by

Ly ,y [k](x , y)[i ,j] = ∂L(x ,y)[i,j]∂y[k]

f (k)

For a vector valued function f : Rn → Rm, and a k ≤ |p|, define
f (k) : Rn → Rm

f (k)(x) = ∂P(k)f (x) .

L(k)
x (x , y)

Define the vector valued function L(k)
x : Rn × Rm → Rm by

L(k)
x (x , y) = ∂P(k)L(x , y)

where the paritials are w.r.t. the x components.



Lemma

Statement
For k = 1, . . . , |p|, there are functions Fk and Gk such that, for
any k order differentiable function Z : Rn → Rm, and any x ∈ Rn

N(Z )(k)(x) = Fk
(

x , Z (0)(x), ..., Z (k−1)(x)
)

+ Gk
(

x , Z (0)(x), ..., Z (k)(x)
)

L(x , Z (x)) ,

Fact
If A(x) is an differentiable invertible matrix value function,

∂p
(

A(x)−1
)

= −A(x)−1Ap(x)A(x)−1 .
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Proof of Lemma: k = 1
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Induction on k

Assume by induction the lemma holds for index k and let
r = P(k + 1)− P(k). It follows that |r | = 1 and

N(Z )(k+1)(x) = ∂r N(Z )(k)(x)
= ∂r Fk

(
x , Z (0)(x), ..., Z (k−1)(x)

)
+ Gk

(
x , Z (0)(x), ..., Z (k)(x)

)
∂r L(x , Z (x))

+
(
∂r Gk

(
x , Z (0)(x), ..., Z (k)(x)

))
L(x , Z (x))

This completes the inductive step and hence the proof of the
lemma.
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