
The Newton Step Method for Algorithmic
Differentiation with Implicit Functions

Bradley M. Bell
Applied Physics Laboratory,

Health Metrics and Evaluation,
University of Washington,

bradbell@uw.edu

Kasper Kristensen
Department of Appied Mathematics

and Computer Science,
Technical University of Denmark,

kaskr@imm.dtu.dk

West Coast Optimization Seminar
May 14, 2016

Contents

Introduction

Newton Step Theorem

Remarks

Nonlinear Mixed Effects Models

Lemma

Bibliography

Contents

Introduction

Newton Step Theorem

Remarks

Nonlinear Mixed Effects Models

Lemma

Bibliography

Contents

Introduction

Newton Step Theorem

Remarks

Nonlinear Mixed Effects Models

Lemma

Bibliography

Contents

Introduction

Newton Step Theorem

Remarks

Nonlinear Mixed Effects Models

Lemma

Bibliography

Contents

Introduction

Newton Step Theorem

Remarks

Nonlinear Mixed Effects Models

Lemma

Bibliography

Contents

Introduction

Newton Step Theorem

Remarks

Nonlinear Mixed Effects Models

Lemma

Bibliography

Introduction

Problem

There are many circumstances where variables are defined
implicitly and we need to calculate derivatives of functions that
depend on these variables.

I The implicit function approach to equality constrained
optimization; e.g., applied to PDE constrained parameter
estimation.

I Nonlinear mixed effects models where the optimal random
effects are an implicit function of the fixed effects and the
fixed effects objective depends on these random effects.

I More generally consider bilevel programming where the
current point is such that the implicit function theorem
applies to inner variables, and corresponding Lagrange
multipliers, as a function of the outer variables.

Problem

There are many circumstances where variables are defined
implicitly and we need to calculate derivatives of functions that
depend on these variables.

I The implicit function approach to equality constrained
optimization; e.g., applied to PDE constrained parameter
estimation.

I Nonlinear mixed effects models where the optimal random
effects are an implicit function of the fixed effects and the
fixed effects objective depends on these random effects.

I More generally consider bilevel programming where the
current point is such that the implicit function theorem
applies to inner variables, and corresponding Lagrange
multipliers, as a function of the outer variables.

Problem

There are many circumstances where variables are defined
implicitly and we need to calculate derivatives of functions that
depend on these variables.

I The implicit function approach to equality constrained
optimization; e.g., applied to PDE constrained parameter
estimation.

I Nonlinear mixed effects models where the optimal random
effects are an implicit function of the fixed effects and the
fixed effects objective depends on these random effects.

I More generally consider bilevel programming where the
current point is such that the implicit function theorem
applies to inner variables, and corresponding Lagrange
multipliers, as a function of the outer variables.

Problem

There are many circumstances where variables are defined
implicitly and we need to calculate derivatives of functions that
depend on these variables.

I The implicit function approach to equality constrained
optimization; e.g., applied to PDE constrained parameter
estimation.

I Nonlinear mixed effects models where the optimal random
effects are an implicit function of the fixed effects and the
fixed effects objective depends on these random effects.

I More generally consider bilevel programming where the
current point is such that the implicit function theorem
applies to inner variables, and corresponding Lagrange
multipliers, as a function of the outer variables.

Approach

If the implicitly dependent variables are defined by nonlinear
equations, they are usually solved by an iterative procedure.

I The naive approach it to apply AD to the iterative procedure.
I An AD method that computes these derivatives for any order,

using the implicit function instead of the iterative procedure,
can be found in [WWS10, Section 4.1].

I We consider the Newton Step Method for computing
derivatives of functions that are expressed in terms of the
implicitly dependent variables.

I This enables one to easily use forward or reverse mode and
sparsity when calculating derivatives of functions that depend
on implicitly defined variables.

Approach

If the implicitly dependent variables are defined by nonlinear
equations, they are usually solved by an iterative procedure.

I The naive approach it to apply AD to the iterative procedure.

I An AD method that computes these derivatives for any order,
using the implicit function instead of the iterative procedure,
can be found in [WWS10, Section 4.1].

I We consider the Newton Step Method for computing
derivatives of functions that are expressed in terms of the
implicitly dependent variables.

I This enables one to easily use forward or reverse mode and
sparsity when calculating derivatives of functions that depend
on implicitly defined variables.

Approach

If the implicitly dependent variables are defined by nonlinear
equations, they are usually solved by an iterative procedure.

I The naive approach it to apply AD to the iterative procedure.
I An AD method that computes these derivatives for any order,

using the implicit function instead of the iterative procedure,
can be found in [WWS10, Section 4.1].

I We consider the Newton Step Method for computing
derivatives of functions that are expressed in terms of the
implicitly dependent variables.

I This enables one to easily use forward or reverse mode and
sparsity when calculating derivatives of functions that depend
on implicitly defined variables.

Approach

If the implicitly dependent variables are defined by nonlinear
equations, they are usually solved by an iterative procedure.

I The naive approach it to apply AD to the iterative procedure.
I An AD method that computes these derivatives for any order,

using the implicit function instead of the iterative procedure,
can be found in [WWS10, Section 4.1].

I We consider the Newton Step Method for computing
derivatives of functions that are expressed in terms of the
implicitly dependent variables.

I This enables one to easily use forward or reverse mode and
sparsity when calculating derivatives of functions that depend
on implicitly defined variables.

Approach

If the implicitly dependent variables are defined by nonlinear
equations, they are usually solved by an iterative procedure.

I The naive approach it to apply AD to the iterative procedure.
I An AD method that computes these derivatives for any order,

using the implicit function instead of the iterative procedure,
can be found in [WWS10, Section 4.1].

I We consider the Newton Step Method for computing
derivatives of functions that are expressed in terms of the
implicitly dependent variables.

I This enables one to easily use forward or reverse mode and
sparsity when calculating derivatives of functions that depend
on implicitly defined variables.

Newton Step Theorem

Notation

Y (x)
We are given a vector valued function L : Rn × Rm → Rm, and
define the implicit function Y (x) by

L(x , Y (x)) = 0 .

Ly (x , y)
Define the matrix valued function Ly : Rn × Rm → Rm×m by

Ly (x , y)[i ,j] =
∂L(x , y)[i]

∂y[j]
; .

Notation

Y (x)
We are given a vector valued function L : Rn × Rm → Rm, and
define the implicit function Y (x) by

L(x , Y (x)) = 0 .

Ly (x , y)
Define the matrix valued function Ly : Rn × Rm → Rm×m by

Ly (x , y)[i ,j] =
∂L(x , y)[i]

∂y[j]
; .

Notation

|p|, ∂pf (x)
Given a matrix valued function f : R` → Rn×m, and a multi-index
p ∈ Z`

+, we use the notation |p| = p[1] + . . . + p[`] and
∂pf : R` → Rn×m is defined by

∂pf (x) = ∂p[1]

∂xp[1]
[1]

. . .
∂p[`]

∂xp[`]
[`]

f (x) .

N(Z)(x)
Given an arbitrary function Z : Rn → Rm, the corresponding
Newton step N(Z) : Rn → Rm is defined by

N(Z)(x) = Z (x)− Ly (x , Z (x))−1L(x , Z (x)) .

Notation

|p|, ∂pf (x)
Given a matrix valued function f : R` → Rn×m, and a multi-index
p ∈ Z`

+, we use the notation |p| = p[1] + . . . + p[`] and
∂pf : R` → Rn×m is defined by

∂pf (x) = ∂p[1]

∂xp[1]
[1]

. . .
∂p[`]

∂xp[`]
[`]

f (x) .

N(Z)(x)
Given an arbitrary function Z : Rn → Rm, the corresponding
Newton step N(Z) : Rn → Rm is defined by

N(Z)(x) = Z (x)− Ly (x , Z (x))−1L(x , Z (x)) .

Theorem

Notation
Fix x̄ ∈ Rn, define N0(x) to be the constant function
N0(x) = Y (x̄). For k = 1, . . . , define Nk : Rn → Rm by
Nk(x) = N(Nk−1)(x).

Conclusion
It follows that for any multi-index p ∈ Zn

+, and for any k ≥ |p|,

∂pY (x̄) = ∂pNk(x̄) .

Theorem

Notation
Fix x̄ ∈ Rn, define N0(x) to be the constant function
N0(x) = Y (x̄). For k = 1, . . . , define Nk : Rn → Rm by
Nk(x) = N(Nk−1)(x).

Conclusion
It follows that for any multi-index p ∈ Zn

+, and for any k ≥ |p|,

∂pY (x̄) = ∂pNk(x̄) .

Remarks

One Newton Step

Well Known
This theorem is well know for the case k = 1; e.g., [Gil92, eq. 15].

Standard N1(x)
The reference above and the theorem use the following definition

N1(x) = Y (x̄)− Ly (x , Y (x̄))−1L(x , Y (x̄)) .

This requires differentiating the inversion when computing N(1)
1 (x).

Alternate N1(x)
The theorem also holds with the alternate definition

N1(x) = Y (x̄)− Ly (x̄ , Y (x̄))−1L(x , Y (x̄)) .

This avioids differentiating the inversion when computing N(1)
1 (x).

One Newton Step

Well Known
This theorem is well know for the case k = 1; e.g., [Gil92, eq. 15].

Standard N1(x)
The reference above and the theorem use the following definition

N1(x) = Y (x̄)− Ly (x , Y (x̄))−1L(x , Y (x̄)) .

This requires differentiating the inversion when computing N(1)
1 (x).

Alternate N1(x)
The theorem also holds with the alternate definition

N1(x) = Y (x̄)− Ly (x̄ , Y (x̄))−1L(x , Y (x̄)) .

This avioids differentiating the inversion when computing N(1)
1 (x).

One Newton Step

Well Known
This theorem is well know for the case k = 1; e.g., [Gil92, eq. 15].

Standard N1(x)
The reference above and the theorem use the following definition

N1(x) = Y (x̄)− Ly (x , Y (x̄))−1L(x , Y (x̄)) .

This requires differentiating the inversion when computing N(1)
1 (x).

Alternate N1(x)
The theorem also holds with the alternate definition

N1(x) = Y (x̄)− Ly (x̄ , Y (x̄))−1L(x , Y (x̄)) .

This avioids differentiating the inversion when computing N(1)
1 (x).

Checkpointing

In General
Often an procedure can be divided into steps where a reduced set
of variables are input to each step. Checkpointing [AW00] is a
technique for reducing the memory required by AD in this case.

One Newton Step
When computing Nk(x) for k > 1, we can divide the computaiton
into Newton steps

(x , y)→
(

x , y − Ly (x , y)−1L(x , y)
)

.

We only need to record one such step when computing derivatives
of Nk(x) for any k.

Example Package
The cppad mixed packages takes advantage of this technique
[Bel16].

Checkpointing

In General
Often an procedure can be divided into steps where a reduced set
of variables are input to each step. Checkpointing [AW00] is a
technique for reducing the memory required by AD in this case.

One Newton Step
When computing Nk(x) for k > 1, we can divide the computaiton
into Newton steps

(x , y)→
(

x , y − Ly (x , y)−1L(x , y)
)

.

We only need to record one such step when computing derivatives
of Nk(x) for any k.

Example Package
The cppad mixed packages takes advantage of this technique
[Bel16].

Checkpointing

In General
Often an procedure can be divided into steps where a reduced set
of variables are input to each step. Checkpointing [AW00] is a
technique for reducing the memory required by AD in this case.

One Newton Step
When computing Nk(x) for k > 1, we can divide the computaiton
into Newton steps

(x , y)→
(

x , y − Ly (x , y)−1L(x , y)
)

.

We only need to record one such step when computing derivatives
of Nk(x) for any k.

Example Package
The cppad mixed packages takes advantage of this technique
[Bel16].

Nonlinear Mixed Effects Models

Backgound

Model
We use x to denote the fixed effects, y to denote the random
effects, and z to denote the data in a non-lienar mixed effects
model. We are given a representation for the densities p(z |x , y),
p(y |x), and p(x).

Problem

minimize −
∫

y
p(z |x , y) p(y |x) p(x) dy w.r.t x

Often the dimension of y is large and the Hessian w.r.t y is sparse.

Approximating Objective
The Laplace approximation for the objective above is expressed in
terms of the Hessian of the integrand w.r.t y . Its use has increased
with the advent of good AD techniques.

Backgound

Model
We use x to denote the fixed effects, y to denote the random
effects, and z to denote the data in a non-lienar mixed effects
model. We are given a representation for the densities p(z |x , y),
p(y |x), and p(x).

Problem

minimize −
∫

y
p(z |x , y) p(y |x) p(x) dy w.r.t x

Often the dimension of y is large and the Hessian w.r.t y is sparse.

Approximating Objective
The Laplace approximation for the objective above is expressed in
terms of the Hessian of the integrand w.r.t y . Its use has increased
with the advent of good AD techniques.

Backgound

Model
We use x to denote the fixed effects, y to denote the random
effects, and z to denote the data in a non-lienar mixed effects
model. We are given a representation for the densities p(z |x , y),
p(y |x), and p(x).

Problem

minimize −
∫

y
p(z |x , y) p(y |x) p(x) dy w.r.t x

Often the dimension of y is large and the Hessian w.r.t y is sparse.

Approximating Objective
The Laplace approximation for the objective above is expressed in
terms of the Hessian of the integrand w.r.t y . Its use has increased
with the advent of good AD techniques.

Laplace Approximation
H(x , y)
H(x , y) = −p(z |x , y) p(y |x) p(x) .

Hy ,y (x , y)
We use Hy ,y (x , y) to denote the Hessian of H .w.r.t y and we
assume that it is always positive definite.

Y (x)
We use Y (x) for the argmin of H(x , y) with respect to y ; i.e.,

L(x , Y (x)) = Hy (x , Y (x))T = 0 .

Approximate Objective
The Laplace approximation of the objective is

1
2 log det (Hy ,y (x , Y (x))) + H(x , Y (x)) .

Laplace Approximation
H(x , y)
H(x , y) = −p(z |x , y) p(y |x) p(x) .

Hy ,y (x , y)
We use Hy ,y (x , y) to denote the Hessian of H .w.r.t y and we
assume that it is always positive definite.

Y (x)
We use Y (x) for the argmin of H(x , y) with respect to y ; i.e.,

L(x , Y (x)) = Hy (x , Y (x))T = 0 .

Approximate Objective
The Laplace approximation of the objective is

1
2 log det (Hy ,y (x , Y (x))) + H(x , Y (x)) .

Laplace Approximation
H(x , y)
H(x , y) = −p(z |x , y) p(y |x) p(x) .

Hy ,y (x , y)
We use Hy ,y (x , y) to denote the Hessian of H .w.r.t y and we
assume that it is always positive definite.

Y (x)
We use Y (x) for the argmin of H(x , y) with respect to y ; i.e.,

L(x , Y (x)) = Hy (x , Y (x))T = 0 .

Approximate Objective
The Laplace approximation of the objective is

1
2 log det (Hy ,y (x , Y (x))) + H(x , Y (x)) .

Laplace Approximation
H(x , y)
H(x , y) = −p(z |x , y) p(y |x) p(x) .

Hy ,y (x , y)
We use Hy ,y (x , y) to denote the Hessian of H .w.r.t y and we
assume that it is always positive definite.

Y (x)
We use Y (x) for the argmin of H(x , y) with respect to y ; i.e.,

L(x , Y (x)) = Hy (x , Y (x))T = 0 .

Approximate Objective
The Laplace approximation of the objective is

1
2 log det (Hy ,y (x , Y (x))) + H(x , Y (x)) .

Approximate Objective
Motivation
The Hessian of the approximate objective can be used during
optimization. It can also be used as a approximation of the the
inverse of the covariance for the optimal solution.

Optimal Value Component
H(x , Y (x)) is an optimal value function and has the same Hessian
w.r.t to x as its one step representation ([BB08, Theorem 2]):

H(x , N1(x))

Bilevel Programming Component
As direct application of the theorem in the talk,

1
2 log det (Hy ,y (x , Y (x)))

has the same Hessian .w.r.t x as the two step approximation

1
2 log det (Hy ,y (x , N2(x)))

Approximate Objective
Motivation
The Hessian of the approximate objective can be used during
optimization. It can also be used as a approximation of the the
inverse of the covariance for the optimal solution.

Optimal Value Component
H(x , Y (x)) is an optimal value function and has the same Hessian
w.r.t to x as its one step representation ([BB08, Theorem 2]):

H(x , N1(x))

Bilevel Programming Component
As direct application of the theorem in the talk,

1
2 log det (Hy ,y (x , Y (x)))

has the same Hessian .w.r.t x as the two step approximation

1
2 log det (Hy ,y (x , N2(x)))

Approximate Objective
Motivation
The Hessian of the approximate objective can be used during
optimization. It can also be used as a approximation of the the
inverse of the covariance for the optimal solution.

Optimal Value Component
H(x , Y (x)) is an optimal value function and has the same Hessian
w.r.t to x as its one step representation ([BB08, Theorem 2]):

H(x , N1(x))

Bilevel Programming Component
As direct application of the theorem in the talk,

1
2 log det (Hy ,y (x , Y (x)))

has the same Hessian .w.r.t x as the two step approximation

1
2 log det (Hy ,y (x , N2(x)))

Lemma

Incremental Multi-Index Sequence

Fix p ∈ Zn
+, the multi-index in the theorem, and select an

incremental sequence

{P(0), P(1), · · · , P(|p|)} ⊂ Zn
+

such that:
I P(0) = 0,

I P(|p|) = p,
I P(j + 1)− P(j) ≥ 0,
I |P(j + 1)− P(j)| = 1.

It follows that |P(j)| = j .

Incremental Multi-Index Sequence

Fix p ∈ Zn
+, the multi-index in the theorem, and select an

incremental sequence

{P(0), P(1), · · · , P(|p|)} ⊂ Zn
+

such that:
I P(0) = 0,
I P(|p|) = p,

I P(j + 1)− P(j) ≥ 0,
I |P(j + 1)− P(j)| = 1.

It follows that |P(j)| = j .

Incremental Multi-Index Sequence

Fix p ∈ Zn
+, the multi-index in the theorem, and select an

incremental sequence

{P(0), P(1), · · · , P(|p|)} ⊂ Zn
+

such that:
I P(0) = 0,
I P(|p|) = p,
I P(j + 1)− P(j) ≥ 0,

I |P(j + 1)− P(j)| = 1.
It follows that |P(j)| = j .

Incremental Multi-Index Sequence

Fix p ∈ Zn
+, the multi-index in the theorem, and select an

incremental sequence

{P(0), P(1), · · · , P(|p|)} ⊂ Zn
+

such that:
I P(0) = 0,
I P(|p|) = p,
I P(j + 1)− P(j) ≥ 0,
I |P(j + 1)− P(j)| = 1.

It follows that |P(j)| = j .

Incremental Multi-Index Sequence

Fix p ∈ Zn
+, the multi-index in the theorem, and select an

incremental sequence

{P(0), P(1), · · · , P(|p|)} ⊂ Zn
+

such that:
I P(0) = 0,
I P(|p|) = p,
I P(j + 1)− P(j) ≥ 0,
I |P(j + 1)− P(j)| = 1.

It follows that |P(j)| = j .

Incremental Multi-Index Sequence

Fix p ∈ Zn
+, the multi-index in the theorem, and select an

incremental sequence

{P(0), P(1), · · · , P(|p|)} ⊂ Zn
+

such that:
I P(0) = 0,
I P(|p|) = p,
I P(j + 1)− P(j) ≥ 0,
I |P(j + 1)− P(j)| = 1.

It follows that |P(j)| = j .

Notation
Ly ,y [k](x , y)
Define the matrix valued function Ly ,y [k] : Rn × Rm → Rm×m by

Ly ,y [k](x , y)[i ,j] = ∂L(x ,y)[i,j]∂y[k]

f (k)

For a vector valued function f : Rn → Rm, and a k ≤ |p|, define
f (k) : Rn → Rm

f (k)(x) = ∂P(k)f (x) .

L(k)
x (x , y)

Define the vector valued function L(k)
x : Rn × Rm → Rm by

L(k)
x (x , y) = ∂P(k)L(x , y)

where the paritials are w.r.t. the x components.

Notation
Ly ,y [k](x , y)
Define the matrix valued function Ly ,y [k] : Rn × Rm → Rm×m by

Ly ,y [k](x , y)[i ,j] = ∂L(x ,y)[i,j]∂y[k]

f (k)

For a vector valued function f : Rn → Rm, and a k ≤ |p|, define
f (k) : Rn → Rm

f (k)(x) = ∂P(k)f (x) .

L(k)
x (x , y)

Define the vector valued function L(k)
x : Rn × Rm → Rm by

L(k)
x (x , y) = ∂P(k)L(x , y)

where the paritials are w.r.t. the x components.

Notation
Ly ,y [k](x , y)
Define the matrix valued function Ly ,y [k] : Rn × Rm → Rm×m by

Ly ,y [k](x , y)[i ,j] = ∂L(x ,y)[i,j]∂y[k]

f (k)

For a vector valued function f : Rn → Rm, and a k ≤ |p|, define
f (k) : Rn → Rm

f (k)(x) = ∂P(k)f (x) .

L(k)
x (x , y)

Define the vector valued function L(k)
x : Rn × Rm → Rm by

L(k)
x (x , y) = ∂P(k)L(x , y)

where the paritials are w.r.t. the x components.

Lemma

Statement
For k = 1, . . . , |p|, there are functions Fk and Gk such that, for
any k order differentiable function Z : Rn → Rm, and any x ∈ Rn

N(Z)(k)(x) = Fk
(

x , Z (0)(x), ..., Z (k−1)(x)
)

+ Gk
(

x , Z (0)(x), ..., Z (k)(x)
)

L(x , Z (x)) ,

Fact
If A(x) is an differentiable invertible matrix value function,

∂p
(

A(x)−1
)

= −A(x)−1Ap(x)A(x)−1 .

Lemma

Statement
For k = 1, . . . , |p|, there are functions Fk and Gk such that, for
any k order differentiable function Z : Rn → Rm, and any x ∈ Rn

N(Z)(k)(x) = Fk
(

x , Z (0)(x), ..., Z (k−1)(x)
)

+ Gk
(

x , Z (0)(x), ..., Z (k)(x)
)

L(x , Z (x)) ,

Fact
If A(x) is an differentiable invertible matrix value function,

∂p
(

A(x)−1
)

= −A(x)−1Ap(x)A(x)−1 .

Proof of Lemma: k = 1

N(Z)(x) = Z (x)− Ly (x , Z (x))−1L(x , Z (x))

N(Z)(1)(x) = Z (1)(x)− Ly (x , Z (x))−1Ly (x , Z (x))Z (1)(x)
− Ly (x , Z (x))−1L(1)

x (x , Z (x))
− Ly (x , Z (x))−1

(
∂P(1)(Ly (x , Z (x))

)
Ly (x , Z (x))−1

L(x , Z (x))

N(Z)(1)(x) = − Ly (x , Z (x))−1L(1)
x (x , Z (x))

− Ly (x , Z (x))−1
(
∂P(1)(Ly (x , Z (x))

)
Ly (x , Z (x))−1

L(x , Z (x))

Proof of Lemma: k = 1

N(Z)(x) = Z (x)− Ly (x , Z (x))−1L(x , Z (x))

N(Z)(1)(x) = Z (1)(x)− Ly (x , Z (x))−1Ly (x , Z (x))Z (1)(x)
− Ly (x , Z (x))−1L(1)

x (x , Z (x))
− Ly (x , Z (x))−1

(
∂P(1)(Ly (x , Z (x))

)
Ly (x , Z (x))−1

L(x , Z (x))

N(Z)(1)(x) = − Ly (x , Z (x))−1L(1)
x (x , Z (x))

− Ly (x , Z (x))−1
(
∂P(1)(Ly (x , Z (x))

)
Ly (x , Z (x))−1

L(x , Z (x))

Proof of Lemma: k = 1

N(Z)(x) = Z (x)− Ly (x , Z (x))−1L(x , Z (x))

N(Z)(1)(x) = Z (1)(x)− Ly (x , Z (x))−1Ly (x , Z (x))Z (1)(x)
− Ly (x , Z (x))−1L(1)

x (x , Z (x))
− Ly (x , Z (x))−1

(
∂P(1)(Ly (x , Z (x))

)
Ly (x , Z (x))−1

L(x , Z (x))

N(Z)(1)(x) = − Ly (x , Z (x))−1L(1)
x (x , Z (x))

− Ly (x , Z (x))−1
(
∂P(1)(Ly (x , Z (x))

)
Ly (x , Z (x))−1

L(x , Z (x))

Induction on k

Assume by induction the lemma holds for index k and let
r = P(k + 1)− P(k). It follows that |r | = 1 and

N(Z)(k+1)(x) = ∂r N(Z)(k)(x)
= ∂r Fk

(
x , Z (0)(x), ..., Z (k−1)(x)

)
+ Gk

(
x , Z (0)(x), ..., Z (k)(x)

)
∂r L(x , Z (x))

+
(
∂r Gk

(
x , Z (0)(x), ..., Z (k)(x)

))
L(x , Z (x))

This completes the inductive step and hence the proof of the
lemma.

Induction on k

Assume by induction the lemma holds for index k and let
r = P(k + 1)− P(k). It follows that |r | = 1 and

N(Z)(k+1)(x) = ∂r N(Z)(k)(x)
= ∂r Fk

(
x , Z (0)(x), ..., Z (k−1)(x)

)
+ Gk

(
x , Z (0)(x), ..., Z (k)(x)

)
∂r L(x , Z (x))

+
(
∂r Gk

(
x , Z (0)(x), ..., Z (k)(x)

))
L(x , Z (x))

This completes the inductive step and hence the proof of the
lemma.

Induction on k

Assume by induction the lemma holds for index k and let
r = P(k + 1)− P(k). It follows that |r | = 1 and

N(Z)(k+1)(x) = ∂r N(Z)(k)(x)
= ∂r Fk

(
x , Z (0)(x), ..., Z (k−1)(x)

)
+ Gk

(
x , Z (0)(x), ..., Z (k)(x)

)
∂r L(x , Z (x))

+
(
∂r Gk

(
x , Z (0)(x), ..., Z (k)(x)

))
L(x , Z (x))

This completes the inductive step and hence the proof of the
lemma.

Bibliography

[AW00] Griewank Andreas and Andrea Walther.
Algorithm 799: Revolve: An implementation of
checkpointing for the reverse or adjoint mode of
computational differentiation.
ACM Transactions on Mathematical Software,
26:19–45, 2000.

[BB08] Bradley M. Bell and James V. Burke.
Algorithmic differentiation of implicit functions and
optimal values.
In Christian H. Bischof, H. Martin BÃĳcker, Paul
Hovland, Uwe Naumann, and Jean Utke, editors,
Advances in Automatic Differentiation, pages 67–77.
Springer Verlag, 2008.

[Bel16] Bradley M. Bell.
cppad mixed: Laplace Approximation of Mixed Effects
Models.
IHME: Institute for
Health Metrics and Evaluation, University of Washington,

http://moby.ihme.washington.edu/bradbell/cppad mixed/,
2016.

[Gil92] Jean Charles Gilbert.
Automatic differentiation and iterative processes.
Optimization methods and software, 1:13–21, 1992.

[WWS10] Mathias Wagner, Andrea Waltherc, and Bernd-Jochen
Schaefer.
On the efficient computation of high-order derivatives
for implicitly defined functions.
Computer Physics Communications, 181:756–764, 2010.

	Introduction
	Newton Step Theorem
	Remarks
	Nonlinear Mixed Effects Models
	Lemma
	Bibliography

