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Abstract We observe that Sturm’s error bounds readily imply that for semidefinite feasibility

problems, the method of alternating projections converges at a rate of O
(
k
− 1

2d+1−2

)
, where d

is the singularity degree of the problem — the minimal number of facial reduction iterations
needed to induce Slater’s condition. Consequently, for almost all such problems (in the sense

of Lebesgue measure), alternating projections converge at a worst-case rate of O
(

1√
k

)
.
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1 Introduction

In this short note, we revisit a basic result of semi-definite programming due to Sturm [23]:
denoting by V an affine subspace of symmetric matrices having a nonempty intersection with
the positive semi-definite cone Sn+, the semi-definite feasibility problem

X ∈ V ∩ Sn+

always admits a Hölder error bound, meaning that on any compact subset U of Sn, the distance
of any putative solution X ∈ U to the true solution set V ∩ Sn+ is bounded by a multiple of a
certain power of the distance ofX to the affine space V and to Sn+, separately. Most interestingly,
Sturm showed that the power (Hölder exponent) can be set to 2−d, where d is the singularity
degree of the problem — the minimal number of facial reduction iterations needed to induce
Slater’s condition. For a discussion on facial reduction see the original work [10] or the more
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recent manuscripts [20, 26]. What is striking here is that the exponent only depends on the
singularity degree, and not say on the size or the rank of the matrices.

In this note, we combine Sturm’s error bounds with the recent work [6] to conclude that
the classical method of alternating projections (that of von Neumann [25]) converges at a rate

of O
(
k
− 1

2d+1−2

)
, where d is the singularity degree of the problem. This result is neither very

surprising, since the sublinear rate at which alternating projections converge is intimately tied
to the Hölder regularity of the intersection V ∩ Sn+, nor does it advocate the use of alternating
projections for ill-conditioned problems. Nonetheless, the rate is notable: contrary to the com-
mon belief that alternating projections can converge “arbitrarily slowly” for ill-posed problems,
the asymptotic rate of convergence for semi-definite feasibility problems is very precise. Many
problems of interest that are degenerate only due to poor modeling choices have singularity

degree at most one. For such problems, the method converges at the worst-case rate O
(

1√
k

)
.

Moreover, we observe that this worst-case rate is, in a precise mathematical sense, typical for
semi-definite problems (even ones that are infeasible).

2 Sublinear convergence of alternating projections

Consider a Euclidean space E (finite-dimensional real inner product space), along with an inner
product 〈·, ·〉 and the induced norm | · |. Given a convex set Q ⊂ E, we define the distance
function

dist(x,Q) := min
y∈Q
|x− y|

and the projection mapping

proj(x,Q) := {y ∈ Q : |x− y| = dist(x,Q)}.

We let clQ, riQ, and rbQ denote the closure, relative interior, and relative boundary of Q,
respectively. It is standard that if Q is closed and convex, then the set proj(x,Q) is a singleton;
see for example [7].

Fix now two closed, convex sets A and B and consider the feasibility problem:

find some point x ∈ A ∩B. (2.1)

When working with an infeasible problem, it is useful to define the displacement vector, denoted
disp(A,B), to be the minimal norm element of cl (A − B). Observe that A − B may not be
closed and therefore the closure operation may be necessary; see for example [22, Section 9]
for a discussion. We say that the pair (A,B) is weakly infeasible if the origin lies in the closure
cl (A− B) but not in the difference A− B itself. Weak infeasibility can be a point of concern
in numerical optimization since this property is difficult to detect. When the vector disp(A,B)
is attained, meaning that disp(A,B) actually lies in A−B, we have for any points a ∈ A and
b ∈ B the equivalence

a− b = disp(A,B) ⇐⇒ a− b ∈ NB(b) and b− a ∈ NA(a).

Here
NA(a) = {v : 〈v, x− a〉 ≤ 0 for all x ∈ A}

is the usual normal cone of convex analysis. See [1, Facts 1.1] for details.
This note revolves around the method of alternating projections, originating with von Neu-

mann [25], for solving the feasibility problem (2.1). Given a current point ak ∈ A, the method
simply iterates the following two steps

choose bk ∈ projB(ak)

choose ak+1 ∈ projA(bk).

In studying the convergence rate of the method, the following stability property of the inter-
section A ∩B appears naturally.
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Definition 2.1 (Hölder regularity) Consider two closed, convex subsets A and B of E. We
say that the pair (A,B) is γ-Hölder regular if for any compact set U , there is a constant c > 0
so that

dist(x,A ∩B) ≤ c ·
(

distγ(x,A) + distγ(x,B)
)

for all x ∈ U.

We say that (A,B) is γ-Hölder regular, up to displacement, if the pair
(
A− disp(A,B), B

)
is

γ-Hölder regular.

Clearly when (A,B) is γ-Hölder regular, the intersection A ∩ B must be nonempty. Ba-
sic convergence guarantees (with no rate) of alternating projections appear in [11]. Linear
convergence under linear regularity is discussed in [1–3]. A sublinear convergence rate of alter-
nating projections under Hölder regularity was proved in [6], in part using techniques of [1, 3]
and [18, Lemmas 3, 4]. Since the result and its proof are somewhat scattered throughout the
text [6], we provide a proof sketch of the salient points for the reader.

Theorem 2.2 (Convergence rate of alternating projections) Consider two closed con-
vex sets A and B in E, and let {ak, bk} be a sequence of iterates generated by alternating
projections. Then exactly one of the following two situations holds:

(1) The iterates {ak} and {bk} are unbounded in norm, in which case the infimum inf{|a− b| :
a ∈ A, b ∈ B} is not attained.

(2) There exist points ā ∈ A and b̄ ∈ B satisfying ak → ā and bk → b̄ and ā− b̄ = disp(A,B).

In the second case, if the pair (A,B) is γ-Hölder regular, up to displacement, then the sequence
{ak, bk} converges at the sublinear rate

max{|ak − ā|, |bk − b̄|} = O
(
k
− 1

2γ−1−2

)
. (2.2)

Moreover, if the pair (A,B) is linearly regular (γ = 1), up to displacement, then the convergence
is R-linear.

Proof. The fact that only the two claimed situations can hold is well-known; see for example [1,
Facts 1.2]. Suppose now that the second alternative holds, and define v := disp(A,B) = ā− b̄.
Suppose also that the pair (A−v,B) admits a γ-Hölderian error bound. Define for convenience
Av := A− v. Then a short computation (see [6, Middle of the proof of Theorem 4.10]) shows

dist2(bk, Av) ≤ dist2(bk, Av ∩B)− dist2(bk+1, Av ∩B). (2.3)

Taking also into account that the pair (Av, B) is γ-Hölder regular, we deduce that there exists
a constant c so that

c−2γ
−1

· dist2γ
−1

(bk, Av ∩B) ≤ dist2(bk, Av)

≤ dist2(bk, Av ∩B)− dist2(bk+1, Av ∩B). (2.4)

Thus the constants βk := dist2(bk, Av ∩B) satisfy the recursion

βk+1 ≤ βk
(
1− 1

c2γ−1 β
γ−1−1
k

)
. (2.5)

Then by [6, Lemma 4.1], the constants βk satisfy

βk = O
(

(δ + k)
− 1

γ−1−1

)
,

for some δ. In the case γ < 1, the additive term δ can clearly be set to zero. On the other
hand, [1, Example 3.2] shows that (bk)k∈N is Fejér monotone with respect to Av ∩ B, and
therefore by the standard estimate [1, Theorem 3.3(iv)], we have

|bk − b̄| ≤ 2 dist(bk, Av ∩B) = O
(
k
− 1

2γ−1−2

)
.

In the case γ = 1, inequality (2.5) shows a geometric decay in βk. Appealing to [1, Theo-
rem 3.3(iv)] again, linear convergence follows. �
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We next turn to the singularity degree of set intersections – a term coined by Sturm [23]
and rooted in [10]. From now on, we will exclusively consider the problem

find some point x ∈ V ∩ K, (2.6)

where V is an affine subspace of E and K is a closed convex cone. Assume that this problem
is feasible and that K has a nonempty interior (for simplicity). We then say that the Slater
condition holds if V meets the interior of K. Whenever the Slater condition fails, one would like
to detect this pathology and to regularize the problem somehow. With this in mind, Borwein
and Wolkowicz [10] introduced the following procedure, called facial reduction, to successively
embed the problem (2.6) in a smaller dimensional space, relative to which the Slater condition
does hold. Here, we describe the conceptual mechanics of the procedure; a rigorous numerical
study of facial reduction appears in [12]. To this end, consider some representation

V = {x : A(x) = b}

for some linear mapping A : E→ Rm and for some vector b ∈ Rm. Then the first iteration of
facial reduction consists of solving the auxiliary problem: find y ∈ Rm satisfying

0 6= A∗y ∈ K∗ and 〈y, b〉 = 0, (2.7)

where A∗ denotes the adjoint and K∗ = {z : 〈z, x〉 ≥ 0 for all x ∈ K} is the dual cone. The
auxiliary problem is feasible if and only if the Slater condition fails. Supposing the latter, let y
solve the auxiliary problem (2.7). Then the entire feasible region V ∩K is contained in the slice
K ∩ (A∗y)⊥. We now replace K with K ∩ (A∗y)⊥ and E with the linear span of K ∩ (A∗y)⊥,
and repeat the procedure. The minimal number of facial reduction iterations needed to obtain
a problem satisfying the Slater condition is the singularity degree of the pair (V,K). In general,
the singularity degree is no greater than n − 1, and there are problems that require exactly
n − 1 facial reduction iterations [24, Section 2.6] — a property closely tied to possible failure
of strict complementarity for SDP [13, Section 4.4.2].

It will be convenient to extend the definition of singularity degree to situations where V
and K may not intersect. To this end, when the displacement vector disp(V,K) is attained,
the translated affine subspace V − disp(V,K) and the cone K do intersect and we define the
singularity degree of (V,K), with displacement, to be the singularity degree of the pair

(
V −

disp(V,K),K
)
. When disp(V,K) is unattained, we say that the singularity degree of (V,K),

with displacement, is +∞.
An important instance of (2.6), and one that we focus on, is the semi-definite feasibility

problem:
find some matrix X ∈ V ∩ Sn+,

where V is an affine subspace of the Euclidean space of n× n-symmetric matrices Sn and Sn+
is the convex cone of n× n positive semi-definite matrices. We will always endow Sn with the
trace inner product 〈X,Y 〉 = trXY and the Frobenius norm ‖X‖ =

√
〈X,X〉. In [23], Jos F.

Sturm discovered a surprising connection between Hölder regularity and singularity degree in
the semi-definite feasibility problem.

Theorem 2.3 (Sturm’s error bounds for SDP) Given an affine subspace V of Sn, the
pair (V,Sn+) is 1

2d
−Hölder regular, with displacement, where d is the singularity degree of

(V,Sn+), with displacement.

Combining Sturm’s result with Theorem 2.2, we immediately deduce the main contribution
of this section.

Theorem 2.4 (Convergence rate of alternating projections for SDP) Given an affine
subspace V of Sn, consider the semi-definite feasibility problem:

find some matrix X ∈ V ∩ Sn+.

Letting {Xk, Yk} be the sequence of iterates generated by the method of alternating projections,
exactly one of the following two situations holds:
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(1) The iterates {Xk} and {Yk} are unbounded in norm, in which case the displacement vector
disp(V,Sn+) is not attained.

(2) There exist matrices X̄ and Ȳ satisfying Xk → X̄ and Yk → Ȳ , with X̄ − Ȳ = disp(V,Sn+).

In the second case, the iterates {Xk, Yk} converge at a rate O
(
k
− 1

2d+1−2

)
, where d is the

singularity degree of the pair (V,Sn+), with displacement. Moreover, if the problem is feasible
and the Slater condition holds, then the convergence is R-linear.

3 Typical singularity degree and convergence of alternating projections for SDP

Consider the feasibility problem

find some point x ∈ K ∩ {x ∈ E : A(x) = b},

where K is a closed convex cone and A : E→ Rm is a linear mapping. It is well known that the
Slater condition holds for “typical” parameters (A, b) among all parameters (A, b) for which
the problem is feasible. For a discussion of various generic properties of such problems, see for
example [5, 16, 21]. In this brief section, in contrast, we consider the more realistic setting of
when perturbations in parameters can yield an infeasible problem, with an eye towards the
singularity degree.

We first note that the displacement vector of the problem is typically attained. Indeed,
this is a direct consequence of [9]. From now on, all references to a measure on E will refer
specifically to the Lebesgue measure on E.

Proposition 3.1 (Displacement vector is typically attained) Consider a closed, convex
cone K ⊂ E and a vector b ∈ Rm. Then for an open, full-measure set of linear transformations
A : E→ Rm, the infimum

inf{|x− y| : x ∈ K and A(y) = b}

is attained.

Proof. Define
LA,b = {x ∈ E : A(x) = b},

and v := disp(LA,b,K). Then the set LA,b− v−K is closed if and only if (kerA)−K is closed.
A well-known theorem of Abrams (see for example [4, Lemma 3.1] or [19, Lemma 17H]) states
that the latter holds if and only if the image A(K) is closed. On the other hand [8,9] show that
the image A(K) is closed for some open, full-measure set of transformations A. �

Next, we observe that though we cannot typically expect Slater’s condition to hold (or
feasibility to hold for that matter), the singularity degree of the problem, with displacement,
is usually at most one. To this end, consider a closed, convex cone K ⊂ E and define the affine
space V := {x ∈ E : A(x) = b}. Then the “strict complementarity” condition:

there exist x ∈ V ∩ K and y ∈ Rm satisfying 0 6= A∗y ∈ riNK(x).

is sufficient for the singularity degree of (V,K) to be one, provided that K is facially exposed
(see [22, Section 18] for the definition). Indeed, if such x and y exist, then standard convex
analysis shows that y solves the auxiliary problem (2.7), and moreover that K∩ (A∗y)⊥ is the
minimal exposed face of K containing x; see e.g. [17, Theorem A.2]. Hence, in particular, x lies
in the relative interior of K∩(A∗y)⊥ and the Slater condition will hold for the second iteration.
We are now ready to prove the main result.

Proposition 3.2 (Singularity degree is typically at most one)
Consider a closed, facially exposed, convex cone K ⊂ E and a vector b ∈ Rm. Then for a dense
set of linear transformations A : E→ Rm, the feasibility system

K ∩ {x : A(x) = b}

has singularity degree, with displacement, of at most one.
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Proof. Define
LA,b = {x ∈ E : A(x) = b},

and v := disp(LA,b,K). By Proposition 3.1, we may assume that the displacement vector v is
attained, that is we may write v = y − x for some y ∈ LA,b and some x ∈ K. Clearly we may
suppose that the Slater condition fails, since otherwise A would certainly lie in the claimed
dense set. Moreover, we can assume v 6= 0, since the complement of the set of matrices A for
which the problem is feasible but Slater condition fails is a dense set.

Observe that v lies in NK(x) ∩ rgeA∗. Consequently if v actually lies in riNK(x), then the
pair (LA,b − v,K) has singularity degree at most one. Suppose this is not the case, that is we
have v ∈ rbNK(x). Choose then an arbitrary vector w ∈ riNK(x) and define an orthogonal
transformation U : E → E, whose restriction to span {v, w} is a rotation sending v to w,
and whose restriction to span {v, w}⊥ coincides with the identity mapping. Define the linear

transformation Â := A ◦ UT and a point ŷ := Uy. Consider the perturbed system

K ∩ {x : Â(x) = b}. (3.1)

The following properties are then easy to verify:

ŷ ∈ LÂ,b, Ux = x, rge Â∗ = U(rgeA∗).

Observe
ŷ − x = U(y − x) = Uv = w.

Consequently, the inclusion w ∈
(
riNK(x)

)
∩ rge Â∗ holds. We deduce that the pair (LÂ,b,K)

has singularity degree, with displacement, of at most one. Letting w tend to v, the matrices Â
tend to A, and the result follows. �

When V is an affine subspace and the cone K is semi-algebraic (e.g., the positive semi-
definite cone) – meaning that it can be written as a union of finitely many sets, each defined
by finitely many polynomial inequalities – basic quantifier elimination (see [14, Section 2.1.2])
shows that the set of transformations A for which the singularity degree, with displacement,
of the pair (V,K) is at most one, is a semi-algebraic set. On the other hand, it is a direct
consequence of existence of semi-algebraic stratifications [14, Section 2.3] that any dense semi-
algebraic set necessarily contains an open full-measure set; see for example [15, Section 3] for
a discussion. Note that this is in stark contrast to the non semi-algebraic setting. Thus when
K is semi-algebraic (e.g., for K = Sn+), the dense set of transformations A in Proposition 3.2 is
actually an open, full-measure set. In particular, the following typical behavior of alternating
projections is now immediate.

Corollary 3.3 (Generic convergence of alternating projections in SDP)
For a full-measure set of linear transformations A : Sn → Rm, the semi-definite program (for
any b ∈ Rm):

Sn+ ∩ {X : A(X) = b}
has singularity degree, with displacement, of at most one, and consequently the iterates gener-

ated by alternating projections converge at the rate of O
(

1√
k

)
.

We end this section with a numerical experiment illustrating the above result and the inter-
play between alternating projections and error bounds, more broadly. Setting the groundwork,
fix two intersecting closed convex sets A and B in E. Consider now three successive iterates
of alternating projections, namely points b, a+, and b+ satisfying b ∈ B, a+ = PA(b), and
b+ = PB(a+). We will use the following distance estimate; for completeness, we provide a
quick proof.

Lemma 3.4 (Distance to the intersection) Suppose a+ 6= b+. Then the inequality

dist(a+;A ∩B) ≥ sin−1(θ) · |b+ − a+|

holds, where θ is the angle between the two vectors b− a+ and b+ − a+.
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Proof. Clearly we can assume that the intersection A ∩B is nonempty. Since by definition we
have a+ = PA(b) and b+ = PB(a+), the intersection A ∩B lies in the polyhedron

L := {x ∈ E : 〈x− a+, b− a+〉 ≤ 0 and 〈x− b+, a+ − b+〉 ≤ 0}.

Let x be the projection of a+ onto L, and note x 6= a+, since otherwise from the definition of
L we would deduce a+ = b+, a contradiction. Observe now the inequality dist(a+;A ∩ B) ≥
|x−a+|. Writing the optimality conditions for the projection problem onto L, we deduce there
are some real numbers λ, µ ≥ 0 satisfying the stationarity and complementarity conditions:

a+ − x = λ(b− a+) + µ(a+ − b+),

0 = λ〈x− a+, b− a+〉 and 0 = µ〈x− b+, a+ − b+〉.

Multiplying the first equation through by λ(b− a+), we obtain

0 = λ2|b− a+|2 + λµ〈a+ − b+, b− a+〉. (3.2)

Similarly multiplying through by µ(a+ − b+), we obtain

µ|a+ − b+|2 = 〈(a+ − b+) + (b+ − x), µ(a+ − b+)〉
= λµ〈b− a+, a+ − b+〉+ µ2|a+ − b+|2.

(3.3)

We claim λ 6= 0. To see this, suppose otherwise λ = 0. The from (3.3), we deduce µ = 0 or
µ = 1. The first case is impossible since we would deduce a+ = x. Hence supposing µ = 1,
we deduce x = b+. Since then both b and b+ lie in L, the inequalities 〈b+ − a+, b − a+〉 ≤ 0
and 〈b− b+, a+ − b+〉 ≤ 0 must hold. Adding the two inequalities, we obtain the contradiction
a+ = b+. Thus we conclude λ 6= 0.

Clearly µ is nonzero, since otherwise by (3.2) we would deduce b = a+. Solving equations
(3.2) and (3.3) for µ and λ, we obtain

µ = sin−2(θ) and λ = sin−2(θ) cos(θ)
|a+ − b+|
|b− a+|

.

Finally taking into account that x− a+ and b− a+ are orthogonal, we deduce

|x− a+|2 = µ2|a+ − b+|2 − λ2|b− a+|2 = sin−2(θ)|a+ − b+|2,

as claimed. �

Suppose that the pair (A,B) is γ-Hölder regular and that the alternating projection method
is initiated at some a0 ∈ A and does not terminate finitely. Then Lemma 3.4 shows that there
is some constant c > 0 so that all the iterates satisfy the inequality

|b+ − a+|
sin(θ)

≤ dist(a+;A ∩B) ≤ c · distγ(a+;B) ≤ c · |a+ − b+|γ ,

and hence
|b+ − a+|

sin(θ)

1−γ

≤ c, (3.4)

Here θ is the angle between the two vectors b − a+ and b+ − a+. Tracking these quotients
provides a convenient way of testing Hölder error bounds.

We now construct a “generic” SDP feasible region

{X ∈ S10+ : 〈Ai, X〉 = b for i = 1, . . . , 40}.

Namely we generate a vector b ∈ R40 and matrices Ai ∈ S10 for i = 1, . . . , 40 according
to a standard normal distribution. We compute the displacement vector (after the projection
algorithms terminate) and translate the affine constraints to achieve feasibility. We then run al-
ternating projections on the resulting instance (starting with a random starting point), plotting
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the quantities
√
k‖Xk −X∗‖ and the quotients (3.4) with γ = 1/2. Repeating this experiment

40 times, we plot the results in the figure below.
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The figure provides compelling evidence that the curves are bounded, verifying that the
singularity degree with displacement is generically one. Moreover, many of the curves in the
figure on the right are bounded away from zero, providing convincing evidence that the Hölder
exponent for those instances is exactly 1/2.
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