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and then A*y = Z ylAz
i=1

Slater’s condition for (P): 3X > 0 satisfying A(X) = b
Slater’s condition for (D): Jy satisfying A*y < C

Slater in (P) =

e Strong duality: val(P) = val(D) and (D) is attained.
e Bounded dual solutions

e Stability relative to b

Slater (D) often holds in applications, but Slater (P) may fail.
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Degeneracy

Eg: Structured data

11 7
1 1 11 =0
711
or
y oz
Yy —x =0
z y 1

More interesting examples later!
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0£A*y >0, bTy<o0 is consistant.

Distance to (P)-infeasibility (Renegar): infimum of
ICADI = max(|[Allop, |[BI])
such that the system

{ 224:64)()() =b+b } is infeasible.
(Renegar):

distance to (P)-infeasibility = ﬂnhn ) max{[[A_(A*y)||, b7y}
yillyll=
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(P) feasible and y satisfies the auxiliary system —
Q={X=0:AX)=0b} C (A nsT

Facial reduction (Borwein-Wolkowicz ’81):

Replace ST with (A*y)t NSt = ST.

Repeat until Slater (P) holds.

Singularity degree (Sturm ’98):

d =minimal # of facial reduction iterations required.

Connection to error bounds (Sturm ’98):
diStQ(Z)

(distsn (2) + dist 4-15(2) )

(D-Pataki-Wolkowicz ’14): If (P) is degenerate, then

d=1 <= face(b,A(Sﬁ)) is exposed.
Open question:
When is A(ST) facially exposed? When is Pg(ST)?

y is bounded on compact sets
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F={X=0:AX)=0, X;; =1}.
(Tuncel ’01):
aft F = {zf] Lj :O} —  canadd (L7L,-)=0to F
Then (LTL)+ N ST regularizes F.

= ‘ d = 1 and facial reduction is easy ‘
Eg. QAP, graph partitioning, second-lift of MAX-CUT.
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Problem: given a weighed graph G = (V, F,w)

w25 5 Wss
w1 A 8
It i — 7 wsg
w13 7
3 W36 6 we9
find a realization:
2,1, € RT O with  wy = |2 — 22

If possible, then

embdim G = minimal r.

Eg: Sensor network localization and molecular conformation
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W13 7

8 w36 6 wWe9
Idea: “Collapse” cliques
e Not clear how to do this
SDP relaxation
Xiu + ij — 2X2’j = Wjj forall ij € E
F = Xe=0
X0
Krislock-Wolkowicz "10: For “any” cliques x1,...,xm in G
F < N Stnyh

i
e Collapse occurs in the SDP!
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Rounding for EDM

Real problems have noise in w!

Key idea:

n 1L n +
i
Algorithmic framework (Cheung-D-Krislock-Wolkowicz '14):

1. Fix a set of cliques y’
2. Form “approximate exposing matrices” Y; from y;
3. Form the aggregate

Y=Yi+...+ 7Y,

4. Round down Y to a nearest rank n — r matrix A/
5. Solve Least Squares on S% N e St
Reasonable conditions =
output error < m(input noise).

Advertisement: see Krislock TD21 for more.
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Rounding for EDM

5% noise, 6% density (n = 1000, r = 2):
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Figure: Before refinement

Figure: After refinement
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Different idea for noisy EDM

Unfolding heuristic (Weinberger et al. ’79):

max tr(X)
s.t. :5:: ‘ixki - QJXQJ + ;X}j - Ldij|2 <o
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Xe=0
X=0
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Different idea for noisy EDM

Unfolding heuristic (Weinberger et al. ’79):

max tr(X)
s.t. Z ‘Xu — QXZ']' + ij — wij|2 <o
GeE
Xe=0
X>0
(Biswas-Liang-Toh-Ye- Wang ’06)
Intuition: — Z |pi — pjl|?

J=1
Flipped problem: h

¢(r) :==min [ Y [Xy — 2X5 + Xj — wy|?
jEE
st. trX=r
Xe=0
X = 0.
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Approximate Newton

Pareto curve

1
Figure: Graph of ¢
Strategy: approximate Newton method for finding

maximal 7 with ¢(7) < o ‘

Approximate evaluation of ¢ with Frank-Wolfe algorithm.
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Approximate Newton

Convergence guarantee: can obtain X > 0 with

tr X > max-trace and residual <o +¢€

using

2
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Approximate Newton

Convergence guarantee: can obtain X > 0 with

tr X > max-trace and residual <o +¢€

using

— 72 ) L)
o (T Lip hl((TO 7) wo)) FW iterations.

€2 €

Related “flippy strategies”: (van den Berg-Friedlander 08,
Harchaoui-Juditsky-Nemirovski '13)
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Max-trace vs Min-trace
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Max-trace
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Min-trace
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Conclusion & Open questions

e Slater condition: fundamentally important, and can fail in
applications.
e [llustration: noisy, low-rank EDM completions.
e randomized rounding
e Newton with Frank-Wolfe.
e Advertisement:
Survey paper (with H. Wolkowicz) is forthcoming.
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Thank you.



