The many faces of degeneracy in conic optimization

Dmitriy Drusvyatskiy Mathematics, Washington

Joint work with N. Krislock (NIU), G. Pataki (UNC), Y.-L. Voronin (Boulder), and H. Wolkowicz (Waterloo)

Primal-dual pair:

(P) min tr
$$CX$$
 (D) max b^Ty
s.t. $\mathcal{A}(X) = b$ s.t. $\mathcal{A}^*y \leq C$

Primal-dual pair:

$$(P) \quad \min \quad \operatorname{tr} CX \qquad \qquad (D) \quad \max \quad b^T y \\ \text{s.t.} \quad \mathcal{A}(X) = b \qquad \qquad \text{s.t.} \quad \mathcal{A}^* y \preceq C \\ X \succeq 0$$

where

$$\langle C, X \rangle = \text{tr } CX,$$
 $\mathcal{A}(X) = \left(\langle A_1, X \rangle, \langle A_2, X \rangle, \dots, \langle A_m, X \rangle \right)$
and then $\mathcal{A}^* y = \sum_{i=1}^m y_i A_i.$

Primal-dual pair:

$$(P) \quad \min \quad \operatorname{tr} CX \qquad \qquad (D) \quad \max \quad b^T y \\ \text{s.t.} \quad \mathcal{A}(X) = b \qquad \qquad \text{s.t.} \quad \mathcal{A}^* y \preceq C \\ X \succeq 0$$

where

$$\langle C, X \rangle = \text{tr } CX,$$
 $\mathcal{A}(X) = \left(\langle A_1, X \rangle, \langle A_2, X \rangle, \dots, \langle A_m, X \rangle \right)$
and then $\mathcal{A}^* y = \sum_{i=1}^m y_i A_i.$

Slater's condition for (P): $\exists X \succ 0$ satisfying $\mathcal{A}(X) = b$ Slater's condition for (D): $\exists y$ satisfying $\mathcal{A}^*y \prec C$

Primal-dual pair:

$$(P) \quad \min \quad \operatorname{tr} CX \qquad \qquad (D) \quad \max \quad b^T y \\ \text{s.t.} \quad \mathcal{A}(X) = b \qquad \qquad \text{s.t.} \quad \mathcal{A}^* y \preceq C \\ X \succeq 0$$

where

$$\langle C, X \rangle = \text{tr } CX,$$
 $\mathcal{A}(X) = \left(\langle A_1, X \rangle, \langle A_2, X \rangle, \dots, \langle A_m, X \rangle \right)$
and then $\mathcal{A}^* y = \sum_{i=1}^m y_i A_i.$

Slater's condition for (P): $\exists X \succ 0$ satisfying $\mathcal{A}(X) = b$ Slater's condition for (D): $\exists y$ satisfying $\mathcal{A}^*y \prec C$

Slater in $(P) \Rightarrow$

- Strong duality: val(P) = val(D) and (D) is attained.
- Bounded dual solutions
- Stability relative to b

Primal-dual pair:

(P) min tr
$$CX$$
 (D) max b^Ty
s.t. $\mathcal{A}(X) = b$ s.t. $\mathcal{A}^*y \leq C$

where

$$\langle C, X \rangle = \text{tr } CX,$$
 $\mathcal{A}(X) = \left(\langle A_1, X \rangle, \langle A_2, X \rangle, \dots, \langle A_m, X \rangle \right)$
and then $\mathcal{A}^* y = \sum_{i=1}^m y_i A_i.$

Slater's condition for (P): $\exists X \succ 0$ satisfying $\mathcal{A}(X) = b$ Slater's condition for (D): $\exists y$ satisfying $\mathcal{A}^*y \prec C$

Slater in $(P) \Rightarrow$

- Strong duality: val(P) = val(D) and (D) is attained.
- Bounded dual solutions
- Stability relative to b

Slater (D) often holds in applications, but Slater (P) may fail.

Degeneracy

Eg: Structured data

$$\begin{bmatrix} 1 & 1 & ? \\ 1 & 1 & 1 \\ ? & 1 & 1 \end{bmatrix} \succeq 0$$

Degeneracy

Eg: Structured data

$$\begin{bmatrix} 1 & 1 & ? \\ 1 & 1 & 1 \\ ? & 1 & 1 \end{bmatrix} \succeq 0$$

or

$$\begin{bmatrix} x & y & z \\ y & -x & y \\ z & y & 1 \end{bmatrix} \succeq 0$$

Degeneracy

Eg: Structured data

$$\begin{bmatrix} 1 & 1 & ? \\ 1 & 1 & 1 \\ ? & 1 & 1 \end{bmatrix} \succeq 0$$

or

$$\begin{bmatrix} x & y & z \\ y & -x & y \\ z & y & 1 \end{bmatrix} \succeq 0$$

More interesting examples later!

Exactly one holds (statement of alternative):

- Slater (P)
- The auxiliary system

$$0 \neq \mathcal{A}^* y \succeq 0, \quad b^T y \le 0$$

is consistant.

Exactly one holds (statement of alternative):

- Slater (P)
- The auxiliary system

$$\boxed{0 \neq \mathcal{A}^* y \succeq 0, \quad b^T y \leq 0} \quad \text{is consistant.}$$

Distance to (P)-infeasibility (Renegar): infimum of

$$\|(\widehat{\mathcal{A}}, \widehat{b})\|$$

such that the system

$$\left\{ \begin{array}{c} (\mathcal{A}+\widehat{\mathcal{A}})(X)=b+\widehat{b} \\ X\succeq 0 \end{array} \right\} \qquad \text{is infeasible.}$$

Exactly one holds (statement of alternative):

- Slater (P)
- The auxiliary system

$$0 \neq \mathcal{A}^* y \succeq 0, \quad b^T y \leq 0$$
 is consistant.

Distance to (P)-infeasibility (Renegar): infimum of

$$\|(\widehat{\mathcal{A}}, \widehat{b})\| =: \max(\|\widehat{\mathcal{A}}\|_{op}, \|\widehat{b}\|)$$

such that the system

$$\left\{ \begin{array}{c} (\mathcal{A}+\widehat{\mathcal{A}})(X)=b+\widehat{b} \\ X\succeq 0 \end{array} \right\} \qquad \text{is infeasible.}$$

Exactly one holds (statement of alternative):

- Slater (P)
- The auxiliary system

$$\boxed{0 \neq \mathcal{A}^* y \succeq 0, \quad b^T y \leq 0} \quad \text{is consistant.}$$

Distance to (P)-infeasibility (Renegar): infimum of

$$\|(\widehat{\mathcal{A}}, \widehat{b})\| =: \max(\|\widehat{\mathcal{A}}\|_{op}, \|\widehat{b}\|)$$

such that the system

$$\left\{ \begin{array}{c} (\mathcal{A}+\widehat{\mathcal{A}})(X)=b+\widehat{b} \\ X\succeq 0 \end{array} \right\} \qquad \text{is infeasible.}$$

(Renegar):

distance to (P)-infeasibility =
$$\min_{y:\|y\|=1} \max\{\|\lambda_{-}(\mathcal{A}^*y)\|, b^Ty\}$$

(P) feasible and y satisfies the auxiliary system \implies

$$\Omega = \{X \succeq 0 : \mathcal{A}(X) = b\} \subseteq (\mathcal{A}^* y)^{\perp} \cap \mathcal{S}_+^n.$$

(P) feasible and y satisfies the auxiliary system \implies

$$\Omega = \{X \succeq 0 : \mathcal{A}(X) = b\} \subseteq (\mathcal{A}^* y)^{\perp} \cap \mathcal{S}_+^n.$$

Facial reduction (Borwein-Wolkowicz '81):

Replace \mathcal{S}_{+}^{n} with $(\mathcal{A}^{*}y)^{\perp} \cap \mathcal{S}_{+}^{n} \cong \mathcal{S}_{+}^{r}$.

Repeat until Slater (P) holds.

(P) feasible and y satisfies the auxiliary system \implies

$$\Omega = \{X \succeq 0 : \mathcal{A}(X) = b\} \subseteq (\mathcal{A}^* y)^{\perp} \cap \mathcal{S}_+^n.$$

Facial reduction (Borwein-Wolkowicz '81):

Replace \mathcal{S}_{+}^{n} with $(\mathcal{A}^{*}y)^{\perp} \cap \mathcal{S}_{+}^{n} \cong \mathcal{S}_{+}^{r}$. Repeat until Slater (P) holds.

Singularity degree (Sturm '98):

d = minimal # of facial reduction iterations required.

(P) feasible and y satisfies the auxiliary system \implies

$$\Omega = \{X \succeq 0 : \mathcal{A}(X) = b\} \subseteq (\mathcal{A}^* y)^{\perp} \cap \mathcal{S}_+^n.$$

Facial reduction (Borwein-Wolkowicz '81):

Replace \mathcal{S}_{+}^{n} with $(\mathcal{A}^{*}y)^{\perp} \cap \mathcal{S}_{+}^{n} \cong \mathcal{S}_{+}^{r}$. Repeat until Slater (P) holds.

Singularity degree (Sturm '98):

d = minimal # of facial reduction iterations required.

Connection to error bounds (Sturm '98):

$$\frac{\operatorname{dist}_{\Omega}(Z)}{\left(\operatorname{dist}_{\mathcal{S}^n_+}(Z) + \operatorname{dist}_{\mathcal{A}^{-1}b}(Z)\right)^{2^d}}$$
 is bounded on compact sets

(P) feasible and y satisfies the auxiliary system \implies

$$\Omega = \{X \succeq 0 : \mathcal{A}(X) = b\} \subseteq (\mathcal{A}^* y)^{\perp} \cap \mathcal{S}_+^n.$$

Facial reduction (Borwein-Wolkowicz '81):

Replace \mathcal{S}^n_+ with $(\mathcal{A}^*y)^{\perp} \cap \mathcal{S}^n_+ \cong \mathcal{S}^r_+$.

Repeat until Slater (P) holds.

Singularity degree (Sturm '98):

d = minimal # of facial reduction iterations required.

Connection to error bounds (Sturm '98):

$$\frac{\operatorname{dist}_{\Omega}(Z)}{\left(\operatorname{dist}_{\mathcal{S}^n_+}(Z) + \operatorname{dist}_{\mathcal{A}^{-1}b}(Z)\right)^{2^d}}$$
 is bounded on compact sets

(D-Pataki-Wolkowicz '14): If (P) is degenerate, then $d = 1 \iff \text{face}(b, \mathcal{A}(\mathcal{S}^n_+))$ is exposed.

(P) feasible and y satisfies the auxiliary system \implies

$$\Omega = \{ X \succeq 0 : \mathcal{A}(X) = b \} \subseteq (\mathcal{A}^* y)^{\perp} \cap \mathcal{S}_+^n.$$

Facial reduction (Borwein-Wolkowicz '81):

Replace \mathcal{S}^n_+ with $(\mathcal{A}^*y)^{\perp} \cap \mathcal{S}^n_+ \cong \mathcal{S}^r_+$.

Repeat until Slater (P) holds.

Singularity degree (Sturm '98):

d = minimal # of facial reduction iterations required.

Connection to error bounds (Sturm '98):

$$\frac{\operatorname{dist}_{\Omega}(Z)}{\left(\operatorname{dist}_{\mathcal{S}^n_+}(Z) + \operatorname{dist}_{\mathcal{A}^{-1}b}(Z)\right)^{2^d}}$$
 is bounded on compact sets

(D-Pataki-Wolkowicz '14): If (P) is degenerate, then

$$d = 1 \iff face(b, \mathcal{A}(\mathcal{S}^n_+)) \text{ is exposed.}$$

Open question:

When is $\mathcal{A}(\mathcal{S}^n_+)$ facially exposed?

(P) feasible and y satisfies the auxiliary system \implies

$$\Omega = \{ X \succeq 0 : \mathcal{A}(X) = b \} \subseteq (\mathcal{A}^* y)^{\perp} \cap \mathcal{S}_+^n.$$

Facial reduction (Borwein-Wolkowicz '81):

Replace \mathcal{S}_{+}^{n} with $(\mathcal{A}^{*}y)^{\perp} \cap \mathcal{S}_{+}^{n} \cong \mathcal{S}_{+}^{r}$.

Repeat until Slater (P) holds.

Singularity degree (Sturm '98):

d = minimal # of facial reduction iterations required.

Connection to error bounds (Sturm '98):

$$\frac{\operatorname{dist}_{\Omega}(Z)}{\left(\operatorname{dist}_{\mathcal{S}^n_+}(Z) + \operatorname{dist}_{\mathcal{A}^{-1}b}(Z)\right)^{2^d}} \quad \text{is bounded on compact sets}$$

(D-Pataki-Wolkowicz '14): If (P) is degenerate, then

$$d = 1 \iff face(b, \mathcal{A}(\mathcal{S}^n_+)) \text{ is exposed.}$$

Open question:

When is $\mathcal{A}(\mathcal{S}^n_+)$ facially exposed? When is $\mathcal{P}_E(\mathcal{S}^n_+)$?

Consider the region

$$\mathcal{F} := \left\{ x \in \mathbf{R}^n : \mathcal{A} \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix} = 0 \right\}$$

Consider the region

$$\mathcal{F} := \left\{ x \in \mathbf{R}^n : \mathcal{A} \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix} = 0 \right\}$$

and its SDP lift

$$\widehat{\mathcal{F}} = \{ X \succeq 0 : \mathcal{A}(X) = 0, \ X_{11} = 1 \}.$$

Consider the region

$$\mathcal{F} := \left\{ x \in \mathbf{R}^n : \mathcal{A} \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix} = 0 \right\}$$

and its SDP lift

$$\widehat{\mathcal{F}} = \{ X \succeq 0 : \mathcal{A}(X) = 0, X_{11} = 1 \}.$$

(Tunçel '01):

$$\operatorname{aff} \mathcal{F} = \left\{ x : \hat{L} \begin{bmatrix} 1 \\ x \end{bmatrix} = 0 \right\} \quad \Longrightarrow \quad \operatorname{can add} \langle \hat{L}^T \hat{L}, \cdot \rangle = 0 \text{ to } \mathcal{F}$$

Consider the region

$$\mathcal{F} := \left\{ x \in \mathbf{R}^n : \mathcal{A} \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix} = 0 \right\}$$

and its SDP lift

$$\widehat{\mathcal{F}} = \{ X \succeq 0 : \mathcal{A}(X) = 0, X_{11} = 1 \}.$$

(Tunçel '01):

$$\operatorname{aff} \mathcal{F} = \left\{ x : \hat{L} \begin{bmatrix} 1 \\ x \end{bmatrix} = 0 \right\} \quad \Longrightarrow \quad \operatorname{can add} \langle \hat{L}^T \hat{L}, \cdot \rangle = 0 \text{ to } \mathcal{F}$$

Then $(\widehat{L}^T\widehat{L})^{\perp} \cap \mathcal{S}^n_+$ regularizes $\widehat{\mathcal{F}}$.

Consider the region

$$\mathcal{F} := \left\{ x \in \mathbf{R}^n : \mathcal{A} \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix} = 0 \right\}$$

and its SDP lift

$$\widehat{\mathcal{F}} = \{ X \succeq 0 : \mathcal{A}(X) = 0, X_{11} = 1 \}.$$

(Tunçel '01):

$$\operatorname{aff} \mathcal{F} = \left\{ x : \hat{L} \begin{bmatrix} 1 \\ x \end{bmatrix} = 0 \right\} \quad \Longrightarrow \quad \operatorname{can add} \ \langle \hat{L}^T \hat{L}, \, \cdot \, \rangle = 0 \ \operatorname{to} \ \mathcal{F}$$

Then $(\widehat{L}^T\widehat{L})^{\perp} \cap \mathcal{S}_+^n$ regularizes $\widehat{\mathcal{F}}$.

 \Rightarrow | d = 1 and facial reduction is easy |.

Consider the region

$$\mathcal{F} := \left\{ x \in \mathbf{R}^n : \mathcal{A} \begin{pmatrix} 1 & x^T \\ x & xx^T \end{pmatrix} = 0 \right\}$$

and its SDP lift

$$\widehat{\mathcal{F}} = \{ X \succeq 0 : \mathcal{A}(X) = 0, X_{11} = 1 \}.$$

(Tunçel '01):

$$\operatorname{aff} \mathcal{F} = \left\{ x : \hat{L} \begin{bmatrix} 1 \\ x \end{bmatrix} = 0 \right\} \quad \Longrightarrow \quad \operatorname{can add} \ \langle \hat{L}^T \hat{L}, \, \cdot \, \rangle = 0 \ \operatorname{to} \ \mathcal{F}$$

Then $(\widehat{L}^T\widehat{L})^{\perp} \cap \mathcal{S}^n_+$ regularizes $\widehat{\mathcal{F}}$.

 \Rightarrow d = 1 and facial reduction is easy.

Eg. QAP, graph partitioning, second-lift of MAX-CUT.

Problem: given a weighed graph $G = (V, E, \omega)$

Problem: given a weighed graph $G = (V, E, \omega)$

find a **realization**:

$$\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbf{R}^r$$
 with $\omega_{ij} = |\mathbf{x}_i - \mathbf{x}_j|^2$.

Problem: given a weighed graph $G = (V, E, \omega)$

find a **realization**:

$$\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbf{R}^r$$
 with $\omega_{ij} = |\mathbf{x}_i - \mathbf{x}_j|^2$.

If possible, then

embdim $G = \min r$.

Problem: given a weighed graph $G = (V, E, \omega)$

find a **realization**:

$$x_1, \ldots, x_n \in \mathbf{R}^r$$
 with $\omega_{ij} = |x_i - x_j|^2$.

If possible, then

embdim $G = \min r$.

Eg: Sensor network localization and molecular conformation

Natural substructures: cliques.

Natural substructures: cliques.

Natural substructures: cliques.

Idea: "Collapse" cliques

• Not clear how to do this

Natural substructures: cliques.

Idea: "Collapse" cliques

• Not clear how to do this

SDP relaxation

$$\mathcal{F} = \left\{ \begin{array}{c} X_{ii} + X_{jj} - 2X_{ij} = \omega_{ij} & \text{for all } ij \in E \\ Xe = 0 \\ X \succeq 0 \end{array} \right\}$$

Natural substructures: cliques.

Idea: "Collapse" cliques

• Not clear how to do this

SDP relaxation

$$\mathcal{F} = \left\{ \begin{array}{c} X_{ii} + X_{jj} - 2X_{ij} = \omega_{ij} & \text{for all } ij \in E \\ Xe = 0 \\ X \succeq 0 \end{array} \right\}$$

Krislock-Wolkowicz '10: For "any" cliques χ_1, \ldots, χ_m in G

$$\mathcal{F} \subseteq \bigcap_{i} (\mathcal{S}^{n}_{+} \cap Y^{\perp}_{i})$$

Natural substructures: cliques.

Idea: "Collapse" cliques

• Not clear how to do this

SDP relaxation

$$\mathcal{F} = \left\{ \begin{array}{c} X_{ii} + X_{jj} - 2X_{ij} = \omega_{ij} & \text{for all } ij \in E \\ Xe = 0 \\ X \succeq 0 \end{array} \right\}$$

Krislock-Wolkowicz '10: For "any" cliques χ_1, \ldots, χ_m in G

$${\mathcal F} \subseteq \bigcap_i ({\mathcal S}^n_+ \cap {Y}^\perp_i)$$

• Collapse occurs in the SDP!

Real problems have noise in $\omega!$

Real problems have noise in ω !

Key idea:

$$\bigcap_{i} \left(\mathcal{S}_{+}^{n} \cap Y_{i}^{\perp} \right) = \mathcal{S}_{+}^{n} \cap \left(Y_{1} + \ldots + Y_{m} \right)^{\perp}$$

Real problems have noise in $\omega!$

Key idea:

$$\bigcap_{i} \left(\mathcal{S}_{+}^{n} \cap \underline{Y}_{i}^{\perp} \right) = \mathcal{S}_{+}^{n} \cap \left(\underline{Y}_{1} + \ldots + \underline{Y}_{m} \right)^{\perp}$$

Algorithmic framework (Cheung-D-Krislock-Wolkowicz '14):

- 1. Fix a set of cliques χ^i
- 2. Form "approximate exposing matrices" Y_i from χ_i
- 3. Form the aggregate

$$Y = Y_1 + \ldots + Y_m.$$

- 4. Round down Y to a nearest rank n-r matrix \mathcal{N}
- 5. Solve Least Squares on $\mathcal{S}^n_+ \cap \mathcal{N}^\perp \cong \mathcal{S}^r_+$

Real problems have noise in $\omega!$

Key idea:

$$\bigcap_{i} \left(\mathcal{S}_{+}^{n} \cap \underline{Y}_{i}^{\perp} \right) = \mathcal{S}_{+}^{n} \cap \left(\underline{Y}_{1} + \ldots + \underline{Y}_{m} \right)^{\perp}$$

Algorithmic framework (Cheung-D-Krislock-Wolkowicz '14):

- 1. Fix a set of cliques χ^i
- 2. Form "approximate exposing matrices" Y_i from χ_i
- 3. Form the aggregate

$$Y = Y_1 + \ldots + Y_m.$$

- 4. Round down Y to a nearest rank n-r matrix \mathcal{N}
- 5. Solve Least Squares on $\mathcal{S}^n_+ \cap \mathcal{N}^\perp \cong \mathcal{S}^r_+$

Reasonable conditions \Longrightarrow

output error $\leq \kappa$ (input noise).

Real problems have noise in $\omega!$

Key idea:

$$\bigcap_{i} \left(\mathcal{S}_{+}^{n} \cap Y_{i}^{\perp} \right) = \mathcal{S}_{+}^{n} \cap \left(Y_{1} + \ldots + Y_{m} \right)^{\perp}$$

Algorithmic framework (Cheung-D-Krislock-Wolkowicz '14):

- 1. Fix a set of cliques χ^i
- 2. Form "approximate exposing matrices" Y_i from χ_i
- 3. Form the aggregate

$$Y = Y_1 + \ldots + Y_m.$$

- 4. Round down Y to a nearest rank n-r matrix \mathcal{N}
- 5. Solve Least Squares on $\mathcal{S}^n_+ \cap \mathcal{N}^\perp \cong \mathcal{S}^r_+$

Reasonable conditions \Longrightarrow

output error
$$\leq \kappa$$
 (input noise).

Advertisement: see Krislock TD21 for more.

5% noise, 6% density (n = 1000, r = 2):

Figure: Before refinement

Figure: After refinement

Unfolding heuristic (Weinberger et al. '79):

max tr
$$(X)$$

s.t.
$$\sqrt{\sum_{ij \in E} |X_{ii} - 2X_{ij} + X_{jj} - \omega_{ij}|^2} \le \sigma$$
$$Xe = 0$$
$$X \ge 0$$

Unfolding heuristic (Weinberger et al. '79):

max tr
$$(X)$$

s.t.
$$\sqrt{\sum_{ij \in E} |X_{ii} - 2X_{ij} + X_{jj} - \omega_{ij}|^2} \le \sigma$$
$$Xe = 0$$
$$X \ge 0$$

(Biswas-Liang-Toh-Ye-Wang '06)

Unfolding heuristic (Weinberger et al. '79):

max tr
$$(X)$$

s.t.
$$\sqrt{\sum_{ij \in E} |X_{ii} - 2X_{ij} + X_{jj} - \omega_{ij}|^2} \le \sigma$$
$$Xe = 0$$
$$X \ge 0$$

(Biswas-Liang-Toh-Ye-Wang '06)

Intuition:
$$\operatorname{tr}(X) = \frac{1}{2n} \sum_{i,j=1}^{n} ||p_i - p_j||^2$$

Unfolding heuristic (Weinberger et al. '79):

max tr
$$(X)$$

s.t.
$$\sqrt{\sum_{ij \in E} |X_{ii} - 2X_{ij} + X_{jj} - \omega_{ij}|^2} \le \sigma$$
$$Xe = 0$$
$$X \succeq 0$$

(Biswas-Liang-Toh-Ye-Wang '06)

Intuition:
$$\operatorname{tr}(X) = \frac{1}{2n} \sum_{i,j=1}^{n} ||p_i - p_j||^2$$

Flipped problem:

$$\psi(\tau) := \min \sqrt{\sum_{ij \in E} |X_{ii} - 2X_{ij} + X_{jj} - \omega_{ij}|^2}$$
s.t. $\operatorname{tr} X = \tau$

$$Xe = 0$$

$$X \succeq 0.$$

Approximate Newton

Strategy: approximate Newton method for finding

maximal
$$\tau$$
 with $\psi(\tau) \leq \sigma$.

Approximate evaluation of ψ with Frank-Wolfe algorithm.

Approximate Newton

Convergence guarantee: can obtain $X \succeq 0$ with

$$\operatorname{tr} X \ge \operatorname{max-trace}$$
 and residual $\le \sigma + \epsilon$

using

$$\mathcal{O}\left(\frac{\bar{\tau} \cdot \operatorname{Lip}^2}{\epsilon^2} \ln\left(\frac{(\tau_0 - \bar{\tau}) \cdot \psi_0'}{\epsilon}\right)\right) \quad \text{FW iterations.}$$

Approximate Newton

Convergence guarantee: can obtain $X \succeq 0$ with

$$\operatorname{tr} X \ge \operatorname{max-trace}$$
 and residual $\le \sigma + \epsilon$

using

$$\mathcal{O}\left(\frac{\bar{\tau} \cdot \operatorname{Lip}^2}{\epsilon^2} \ln\left(\frac{(\tau_0 - \bar{\tau}) \cdot \psi_0'}{\epsilon}\right)\right) \quad \text{FW iterations.}$$

Related "flippy strategies": (van den Berg-Friedlander '08, Harchaoui-Juditsky-Nemirovski '13)

Max-trace vs Min-trace

Figure: Sensor network

Max-trace

Min-trace

• Slater condition: fundamentally important, and can fail in applications.

- Slater condition: fundamentally important, and can fail in applications.
- Illustration: noisy, low-rank EDM completions.

- Slater condition: fundamentally important, and can fail in applications.
- Illustration: noisy, low-rank EDM completions.
 - randomized rounding
 - Newton with Frank-Wolfe.

- Slater condition: fundamentally important, and can fail in applications.
- Illustration: noisy, low-rank EDM completions.
 - randomized rounding
 - Newton with Frank-Wolfe.
- Advertisement:
 Survey paper (with H. Wolkowicz) is forthcoming.

Thank you.