1 1 Hankel Determinants

A sequence of indeterminants zg, x1, ... is used to make a a Hankel array:
To T1 X2 T3...
Ty T2 X3 T4...
To T3 X4 Xy...
r3s Ty Ty Tg...

For each © > 0, and n > 4, H,; is defined to be the ¢ x ¢ connected minor with z,
along the back diagonal.

hn,i = det Hnﬂ'
The c-table is the set of h,; for n +1 > 7. these determinants satisfy the Sylvester
identity:
hn,i—l : hn,i+1 - hn—l,i : hn—l—l,i - h12q,77,
2 A pattern of locations in the c-table of the form

N
w C FE
S

is called a Sylvestor diamond.

77,'8:’Ll)'€—C2

Suppose the following constellation occurs in the c-table, C' is located as (s, 1).

NN
NW N NE
ww W C E FEFE
sw S SE E

SS
Let A be the 3 x 3 matrix whose entries are at the positions:
NN NE FEFE
NW C SE
ww Sw SS

3 Gragg’s identity is

c-det(A) = —E(w-e+n-s)
This identity is derived solely from Sylvester’s identity (5 times). If xg,xy,... are
indeterminates in the ring Z[xg, 21, . ..], then each Hankel det is an irreducible poly

in the xg, x1,.... One ¢ may be cancelled to give:
1



det(A) = —c(w-e+n-s)
Consider a larger region in the c-table. Suppose A = (s,7) and Z = (¢, ') are locations
as in the diagram:

A

By

Y,
A
4 Thus A is at the location of the ¢ x ¢ matrix with x, on the back diagonal , and Z

is at the location of the i’ x ¢ matrix with z; on the back diagonal.
Let A be the matrix formed by putting the SW diagonal from A as the left hand

column and the SE diagonal as the top row:

fa . . . by . . . n
A= | b w Yo
' m . . oy . . .z

This matrix A is indexed so that A[1, 1] = a and A[j, k] = z. The notation A[g, h,i; 1, m,n]
will stand for the submatrix of A withe columns g, h,i and rows [, m,n For each pair

of locations A and Z as above, there is a polynomial ¢4 7 in Z[xg,x1,...]. These
polynomials have the following property. Let j' be a row index with 1 < j’ < j, and

k' be a columns index with 1 < k&’ < k.

For each pair of locations A and Z, there is a poly ¢4 7 with the following property:
Let j' be a row index with 1 < j" < j let ¥’ be a column index with 1 < k¥’ < k. Refer



to the diagram for the locations of By, Bs, Y7, Yo, W. Thus

a by n
AL 5 LK k= | b w ys
m z

5 Theorem There are two expressions for the det of this matrix:

() det A[1,7,7; 1K k] = t1day, +Y2day, + 20aw — wha z
(i) det A[1, 5, j; 1,k k] = b1¢B,.z + b2dp, 7z + adw.z — WPA 7

We need to consider in more detail the region which has A and Z at opp corners
of a rectangle. From A, 4 rows are seleted, containing A; By (and C); Y5 and V; and
Z. Four columns are selected containing A; By (and C;Y; (and V; Z.

A

B, . .. DB

6 Let A bethe matrix by putting the SW diagonal emanating from A as the LH
column and the SE diagonal as the top row.

[a . by . ... . . . n
bl . C
A =
v Y2
L ™ Y2 < i




These four rows and columns define a matrix, which we call I". Thus

a bg

v Y2
yr z

7 Polynomials Q4 vz and Tz ¢ 4 will be defined inductively depending on the lo-
cations A, C, V, and Z. These poly’s and ¢4 7 and ¢ 4 are defined only when
t—s+7—11is an even integer and j —1 > 1.

(i) If Z is on either SW or SE diagonal, then all four are 0
(i) Suppose A = (s,i), C =V = (s,i+2) and Z = (z,i+4). Then let p be the poly
p=—(hs—1it2 - hst1ita + (Rsiit1 - hs,ivs)
These are the Hankel dets to W, E, N, and S of position C. Then
Wvz=v-p=c-p=Tgzca

bsr =P = ¢rs
(ili) Suppose inductively that ¢g7 and ¢r g have been defined when the difference
between S and 7' is strictly less than the difference between A and Z. Then Q4 v
and Yz 4 are defined by

Qavz = Yiday, +Yaday, — 20av — A[1,3,4;1,3,4]
Yz0a4 = biozp, +b20zp — 2020 —A[1,2,4;1,2,4]

8 (iv) The expressions ¢4 7 and ¢z 4 are defined by

Qavz
¢A7Z — EASE)
v

Qzca

Pza = ——

Cc

Lemma 1 There is a polynomial identity

Qavz-c=Tzoa-v
8 o Both ¢ and v are Hankel dets and hence are irreducible polys in the x;. The
identity of Lemma 1 implies that if V' # C there is an equality

Qavz Tzca
Paz = v = c = ¢z




The case V = C' is handled by (ii) above. In this case Gragg’s identity implies that

Qavz = —A[l1,2,3;1,2,3] = Tzca
9 The proof of Lemma 1 makes use of the 8-term identity (below). Recall that

a b2

The determinant of I'[g, h,i; [, m,n] will be denoted Alg, h,;1, m,n|. The proof uses
the 8-term identity among the 3 by 3 dets of I'.

Lemma 2 There is an 8 term identity:

A[2,3,4:2,3,4] -a — A[2,3,4:1,3,4] - by
CA[1,3,4:2,3,4] by + A[1,3,4:1,3,4] - ¢
CA[L,2,4:1,2,4] - w + A[1,2,4:1,2,3] - o
+A[1,2,3;1,2,4] -y1 — A[1,2,3;1,2,3] -2 = 0

The proof of 8-term id uses the cofactor expansion by the first and second rows, and
by the third and fourth columns. After taking the sum, and cancelling common terms
the id follows. Observe that the uncancelled terms are the cofactors of 8 entries of
the matrix.

Proof of Lemma 1 If 7 is on either the SW or the SE diagonal from A, then

b4z, Qavz, Yzcoa, ¢z

are all defined to be 0. For Z strictly within the SW and SE diagonals, teh proof is by
induction on diff levels A and Z. Start at diff = 4. Thus A = (s,4) and Z = (s,i+4).
Then C =V = (s,i+2),¢ = v In this case ¢az,Qavz, Lz0o4, ¢z defined by (ii)
and statement is Gragg’s id.



Suppose diff A and Z is k, with £ > 4. Then

Qaviz-¢ = Y1Qay,  c+yday;, -

—z¢payv -c—A[1,3,4;1,3,4] - ¢
= yi{b1¢v,.B, + b2dy, B,

—ady, c — A[1,2,3;1,2,4]}
+y2{b1dy,c — A[l,2,351,2,4]
—agy, c —A[1,2,4;1,2,3]}
—2{b1¢v,B, + baodv,B
—agyc — All,2,3;1,2,3]}
—A[1,3,4;1,3,4] - ¢

Yzca-v = bigzp, - v+bapzp v

—apzco-v—A[1,2,4;1,2,4] v
= bi{yn19Byy, + 1208, 11

—z¢p, v —A[2,3,4;1,3,4]}
+bo{y108,v, + 1208, v)
—z¢p, v —A[L,3,4;2,3,4]}
—a{y19c,y, + Y20c vy
—z¢cv — A[2,3,4;2,3,4]}
—A[1,2,4;1,2,4] -v

The equality Q4 vz - ¢ = YTzc4 - v follows from the 8-term id, and repeated use (9
times) of ¢g7r = ¢r,s. It follows that

Qavz Tzoa

(% C

11 The LHS depends only on the choice of rows and columns 1, 3,4 of I', which are
the rows 1, 57,7 and columns 1, k", k of A. Similarly, The RHS depends only on the
choice of rows and columns 1, 2,4 of I", which are the rows 1, ', 7 and columns 1, %', k
Qayv,z

of A. Consequently, the poly is the same for all choices of row ;7 and column



7C’

k” of A. Similarly, the fraction is the same for all choices row j' and column

c
k' of A. This common quotient is the definition of ¢4 7z = ¢z 4.
A special case occurs when A = (s,i) C = (s,i+2) =V, and Z = (s,i +4). Then
equation - becomes
det[1,2,3;1,2,3]| =c- P4z
where ¢4 7z = —(we + ns)

e It follows from Lemma 1, that there is a polynomial identity

A[lv 37 47 17 37 4] = U¢A,Z - y1¢A,Y2 - y2¢A,Y1 + Z¢A,V
12 Example

Suppose a portion of the table is

Qn bn—i—l Cn42 dn+3

bnfl Cn dnJrl €n42
A= Cn—2 dnfl €n fn+1

dnf?; €n—2 fnfl 9n

A special case of the 8-term identity is

A[2,3,4:1,2,3] by — A[1,3,4;1,2,3] - cn +
Al1,2,4:1,2,3] - dpy — A[1,2,3:1,2,3] - €40 =0

This can also be seen by obs that it is the exp of a 4 by 4 det with two equal columns.
Gragg’s id centered at C), and D,,_; are

det A[1,2,3;1,2,3] = —cp-r
det A[2,3,4;1,2,3] = —d,1-s

where r and s are each of the form (we - ns) for appropriate Sylvester Diamonds
centered at C,, and D,,_; respectively. Using these identities, and rearranging terms,
we have

(r-e,o—A[1,3,4;1,2,3]) ¢, = (s b1 — A[1,2,4;1,2,3]) d, 4



In the notation of Lemma 1, 7 = ¢4 5, and s = ¢p, | B, ,, and this equation would
be

QaDp 1Py Cn=TE,_1.0nadn
Let p; be the GCD of Qap, , p,_, and Tg, | ¢, 4 Then

QAaDn—th—l TFn_l,Cn,A

PL= QAR = 4o = c = ¢Fn_17A
n— n

and
p1 - dn—l =€pn—2°S— A[173a47 17273]

There is a similar expression
€n42 - S/ — A[l, 2, 3, 1, 3,4] = P2 - dn+1
For the location G,, we have

Qa0 B0Gn = 97— fa1 D2 — far1 -1 — A[L,3,4;1,3,4]

Reversing the roles of A, and G,, there are polynomials 77, ¢;, and ¢z with
TGmCmAn = Q- 7“' — bn,1 Qo — bn+1 g1 — A[l, 2, 4, 1, 2,4]
A calculation similar to that in Lemma 1, shows that
Q80,60 0 = Ya,.0n A, €n

In the notation of — and —, ¢4, ¢, is the GCD of the LHS and the RHS. Thus

~ Qa,006.  Ta, B A,
A, = =

n Cn

13 Suppose € is the error at C),. Then the error at G,, will be
§<gn> _ |:¢AmGn + angn — dn—3dn+3 I g <€%L — en—26n+2>:| e

bn—l bn+1 c

bn—l bn—l—l

e For any position X, let d(z) be the change at X that results from a change of §(c)
at C. Assume the calculations are made in char 2, and that second order effects can
be ignored.With these assumptions,

6(z) = VA’Z _bsz LI % (—ﬁbc,zbﬂfb:hngﬂ -0(c)

14 The FPA A fixed precision of p bits is chosen. A FPE is (m,e), where




(i) m is an odd integer of p bits;

(ii) e is an integer exponent.

Each entry in the c-table is a FPE, computed by the FPA. Specifically, s is com-
2

w-e—c

puted as S =
n

16 Robbins Conjecture Suppose the c-table is computed by the FPA with mantissa
length p, and suppose the largest exponent in the computed c-table is ¢. Then each
computed expression is accurate in the lowest p — ¢ bits.

The expression (m, e) corresponds to the polynomial
(mp_ 1t "+ .+ mgt? +mgt + 1) - t°

In every case the mantissa has p bits, with the lowest bit always 1.

Neglecting second order effects,

5(s) = e d(w)+w-8(e) =2-0(c) ¢ (we—c?)-5(n)

e-d(w)+w-d(e) —s-d(n)

17 A portion of the c-table.



A
Bn—l Bn+1
On—2 . On . Cn—i—?
Dn73 . anl . Dn+1 . Dn+3
Enf4 . En72 . En . En+2 . En+4
Fn73 . anl . Fn+1 . Fn+3
. . .Gy

Here the dots are locations at the centers of the Sylvester diamonds.

18 Proposition (p 21) Suppose that at location C,, = (n, 1), ¢, is changed to ¢, + €.
Assume that above (), the computations are exact, and that the lower levels are
computed with high precision. Assume also that second order effects can be neglected.
Let

(1) = max ord(bn_l) + OI‘d(bn_H)
B ord(b,_1) + ord(b,4+1) + ord(c,,) — ord(ay,)

Then the change at any position in the c-table has order at least

ord(e) —r

Change at D,, Sl is used in the computation

2
ann = Cp—1Cp41 — Cn
2
= Cp—1Cpy1 — (Cn + 6)
= Cp_1Cpy1 — ci — 2¢,€ — €

= b,d, — 2c,e — €

2¢, - € + €
bn

Change at D, Sl is used in the computation

D, =d, —

2
bn—ldn—l = Cp—2Cp, — Cp_1



2
bn-1Dp_y = Cn—2Cn_cn_1

= Cp—2Cp + Cp—2€ —Cp_4

= bn—ldn—l + Cpo€

Cp—92€

D, 1=d,_
1 1+ b,

Changes along diagonals

The SW diagonal is {C,,, D,,_1, E,_2, Fy_3, ...}
The SW diagonal is {C,,, D11, Enso, Fras, ...}

The computation of e,_5 is

2
Cn—2€n—2 = dn—3dn—1 + dn72

o dn—3 o dn—S Cn—2 o dn—S
A(en_2) B Cp—2 . Adn_l B (Cn—Q bn—l) T (bn—1> ‘

Alfn-s) = ot “Aey g = <2n:: . Z”:j’) ce= St

Then

For each position on the diagonal emansating from C,,

hn k—1,i
A(hy pive) = ————— €
bn+1
hn, ;
+k—1,i+k+1
A(hpigive) = —————— €
bn+1

Change at E,. E, is defined by C,E,, = D,,_1Dyy1 + D?. Let Y = D,,_1D,,,1 — D?
We must show Y is divisible by c¢,.

2 2

bn_ly = (Cn_QCn — Cn—l)Dn-H — bn_an
2 2
= Cn,QCnDnJrl — Cnlen%*l — bnlen

= XC,-U

where X; = ¢, 2Dy and U = c2_ D, 41 + b, 1 D?



bn—HU = 02_1(Cn0n+2 - Ci—H) + bn—i-lbn—lezz

2 2 2
= CnflanrQCn — Ch—1Cnt1 + bnflanrlD

= XoC,+V

2 2 2 2
where Xy = ¢,,_ch0 and V —c;_ ¢, 1 + bp1bp1 Dy,

_ 2 2 2
Vo= _Cnflcn+1+bn*1bn+1Dn

= _(ann + Ci)Q + bn—lbn-‘rlDi

= —b2D? —2b,c,D? — ¢ 4+ by_1b, 1 D?

= CnXg + (anC’n + bn_lbn_HG)D,,zl
= CnX4 + bn—lbn—&-lD?lE

where X, = X5+ anD,Q1
Change at F,,_; The computation of e, _; is

2
Cn-1bn_1 = Dy oDy, + Dn_l

Let Y = D,, oD, — D? | We must show Y is divisible by ¢, ;.

bn—2Y - (Cn—30n—1 - Ci72>Dn - bn—2D271

2 2
= Cp3Cp_1Dp — Cn_an - bn—2Dn_1

= chn—l —-U

where X7 = ¢,_3D,, and U = ci_QDn + bn_gDi_l

bU = Ci—z(cn—lcn-f—l - Orgb) + bn+2an721—1

2 2 2 2
== cn72cn+1C'n_1 - cnszn + bn—anan

= XQCnfl + \%

where Xy = ¢ _ycpq and V — 2,2 + by_sb, D?

2
n

1



Vo= _02720721, + bn—an-D?L,1
_(b”_an—l + 02—1)2 + bn—2ani_1
_bileifl - 2bnflcn71D72Lfl - Ci,1 + bn*anDifl
= Cn—1X3 + an—lcn—lDi_l

= Cp1Xy

where X, = X5+ anD?1

E, 1 is similar to E,,_;.

The first interesting case occurs at FE,. This is a special case of the inductive
step (later). It must be dealt with separately, because it is the starting point of an
induction based on the diffeence between A and Z. The value of E,, is

2
Cptn = dnfldnfl - dn

dn—lA(dn—l—l) + dn+1A(dn—1) . enA(Cn)

A(6n> B C C C
_ <dn—lcn+2bn—1 + dn+lcn—2bn+1 - enbn—lbn—l—l) e
Cn

Let M be the matrix:
Qn, anrl Cn+2
M = bnfl Cn dn+1
Cn—2 dnfl €n

Gragg’s identity centered at C,, is det(M) = p- ¢, , where p = —(ns + ew), and
n, s, w, e are the entries neighboring ¢,,. Thus the change at E,, can be rewritten as

PCn — ApCn€y + Cn+2CnCn—2 + andn—ldn—i-l

Ale,) =
(6 ) Cnbn—lbn+1
<p — Qptn + Cn+2cn—2> e+ (andn—ldn+1> €
bn—lbn—i-l Cnbn—lbn—H

The first fraction has order > ord(e) — ord (b, _1b,41)



The second fraction has order > ord(e + ord(a,)) — ord(c,) — ord(b,_1b,41)

Taken together, thses show that

ord(A(e,)) > ord(e) —r

25 Change at 7

[ a by n no
bl C . . ... . . M3 N9
e
A =
my ms v Y2
L ™M Ny Y1 < J

We want to show that

Paz —az+mn a [ $cz+ monsg
A = ’ Y e e e Rl .
<Z) b1b2 + C blbg ¢

The expression for A(z) can be simplified as follows. For any two locationsS and T'
let M and N be the locations at the opposite corners of the rectangle determined by
S and T'. let

Ysr = ¢sr +mn

With this substitution, the identity becomes

YiVay, + Yolay, — 2¥ayv — 04z = —avz + ay1Ye

The expression for Az becomes

A(Z) _ <C¢A,Z —acz + awc,Z) e

Cblbg



When 7 is at location E ¢¢c g = —d,,—1d,+1 It was established that

3
(Cn + anCpén — Cn+2CnCpn—2 — andn—ldn—l—l) c
Cnbn—lbn—i-l

Alen) =

. (anAn,En + AnCp€n + anqu)Cn,En> p
Cnbn—lbn—l—l

Start of induction based on diff between A and Z. The value of z is computed as

:yl'y2—y(2)
v

26 In Char 2, the change at C' causes no change at Y (to the first order effects).
Inductively, assume that

Alyy) = (cw,y1 —acy + a@bc,yl) .

z

Cb1 bg
M) = (At dlan)
A - (Har=toteier).

y10(y2) +y25 (1) — 2A(v )) et

1Ay, — y1acys + ayic,y, et
UCble

UCbl b2

—czay — zacv — zaPcy
‘€
UCble

chZ—acz~|—a1/JCZ> .

Cbl bg

(cyzw Y1~ Ypacy: + ayie, Y1> et

SI is used in
_ bibo — b2



where b;by — b2 is computed first, and then the result is divided by a. An error can
originate at C' only if ord  b1by = ordb3 Suppose this occurs. Each mantissa is an
odd integer with p bits, where p = precision. Therefore

ordA(c) > p + ord(by) + ord(by) — ord(a)
Let ¢ = max{ord(a),ord(c)} the change (z) at Z satisfies
ordA(z) >p—gq



