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Abstract

We present a new method to propagate p-adic precision in computations, which also applies

to other ultrametric fields. We illustrate it with many examples and give a toy application to

the stable computation of the SOMOS 4 sequence.
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1 Introduction

The last two decades have seen a rise in the popularity of p-adic methods in computational algebra.
For example,

• Bostan et al. [4] used Newton sums for polynomials over Zp to compute composed products
for polynomials over Fp;

• Gaudry et al. [8] used p-adic lifting methods to generate genus 2 CM hyperelliptic curves;

• Kedlaya [10], Lauder [11] and many followers used p-adic cohomology to count points on
hyperelliptic curves over finite fields;

• Lercier and Sirvent [12] computed isogenies between elliptic curves over finite fields using
p-adic differential equations.

Like real numbers, most p-adic numbers cannot be represented exactly, but instead must be stored
with some finite precision. In this paper we focus on methods for handling p-adic precision that
apply across many different algorithms.

Two sources of inspiration arise when studying p-adic algorithms. The first relates Zp to its
quotients Z/pnZ. The preimage in Zp of an element a ∈ Z/pnZ is a ball, and these balls cover Zp

for any fixed n. Since the projection Zp → Z/pnZ is a homomorphism, given unknown elements in
two such balls we can locate the balls in which their sum and product lie. Working on a computer
we must find a way to write elements using only a finite amount of data. By lumping elements
together into these balls of radius p−n, we may model arithmetic in Zp using the finite ring Z/pnZ.
In this representation, all p-adic elements in have constant absolute precision n.

The second source draws upon parallels between Qp and R. Both occur as completions of Q and
we represent elements of both in terms of a set of distinguished rational numbers. In R, floating
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point arithmetic provides approximate operations ⊕ and ⊙ on a subset S∞,h ⊂ Z[ 12 ] that model +
and · in R up to a given relative precision h:

∣

∣

∣

x⊛ y

x ∗ y − 1
∣

∣

∣ ≤ 2−h

for ∗ ∈ {+, ·} and all x, y ∈ S∞,h with x ∗ y 6= 0. The p-adic analogue defines floating point
operations on Sp,h ⊂ Z[ 1p ] with

∣

∣

∣

x⊛ y

x ∗ y − 1
∣

∣

∣

p
≤ p−h.

When using floating point arithmetic, elements are represented with a constant relative precision
h.

In both of these models, precision (absolute or relative) is constant across all elements. Since
some operations lose precision, it can be useful to attach a precision to each element. Over the reals,
such interval arithmetic is unwieldy, since arithmetic operations always increase the lengths of the
inputs. As a consequence, most computations in the real numbers rely on statistical cancelation and
external estimates of precision loss, rather than attempting to track known precision at each step.
This tendency is strengthened by the ubiquity of floating point arithmetic in scientific applications,
where Gaussian distributions are more common than intervals anyway.

In the p-adic world, precision tracking using intervals is much more feasible. Even a long se-
quence of operations with such elements may not sacrifice any precision. Intervals allow number
theorists to provably determine a result modulo a given power of p, and the Gaussian distributions
of measurement error over R have no direct analogue over Qp anyway. As a consequence, interval
arithmetic is ubiquitous in implementations of p-adic numbers. The mathematical software pack-
ages Sage [17], PARI [1] and Magma [3] all include p-adic elements that track precision in this
way.

The approach of propagating precision with each arithmetic operation works well, but does
sometimes underestimate the known precision of a result, as we will discuss in Section 2.1. More-
over, elements of Qp provide building blocks for generic implementations of polynomials, vector
spaces, matrices and power series. The practice of storing the precision within each entry is not
flexible enough for all applications. Sometimes only a rough accounting of precision is needed, in
which case storing and computing the precision of each entry in a large matrix needlessly consumes
space and time. Conversely, recording the precision of each entry does not allow a constraint such
as specifying the precision of f(0), f(1) and f(2) for a quadratic polynomial f .

For a vector space V overQp, we propose that the fundamental object used to store the precision
of an element should be a Zp-lattice H ⊂ V . By using general lattices one can eliminate needless
loss of precision. Moreover, specifying the precision of each entry or recording a fixed precision for
all entries can both be interpreted in terms of lattices. In Section 2 we detail our proposal for how
to represent the precision of an element of a vector space.

In Section 3, we develop the mathematical background on which our proposal is based. The
most notable result of this section is Lemma 3.4 which describes how lattices transform under non-
linear maps and allows us to propagate precision using differentials. More specifically, it describes
a class of first order lattices, whose image under a map of Banach spaces is obtained by applying
the differential of that map. In Section 3.2 we make the conditions of Lemma 3.4 more explicit in
the case of locally analytic functions.

In Section 4 we propose methods for tracking precision in practice. Section 4.1 includes a
discussion of two models of precision tracking: one-pass tracking, where the precision lattice is
propagated at each step of the algorithm, and two-pass tracking, where an initial pass computing
rough approximations is used in computing the precision lattices. We introduce precision types in
Section 4.2, which allow a tradeoff between flexibility, space and time in computing with precision.
In Section 4.3, we give an application of these ideas to an algorithm for computing terms of the
SOMOS sequence.

In Appendix A, we extend the results of Section 3 to p-adic manifolds, describing how to specify
precisions for points on elliptic curves and Grassmannians. Finally, Appendix B describes how to
compute the derivative of many common operations on polynomials and matrices, with an eye
toward applying Lemma 3.4.
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2 Precision proposals

2.1 Problems in precision

The usual way to track p-adic precision consists in replacing p-adic numbers by approximate ele-
ments of the form a+O(pN ) and performing all usual arithmetical operations on these approxima-
tions. We offer below three examples that illustrate cases where this way to track precision does
not yield optimal results.

A linear map.

Consider the function f : Q2
p → Q2

p mapping (x, y) to (x + y, x − y) and the problem of comput-
ing f ◦ f(a + O(pn), b + O(pm)). Applying f twice, computing precision with each step, yields
(

2a+O(pmin(m,n)), 2b+O(pmin(m,n))
)

. On the other hand, f ◦ f(x, y) = (2x, 2y), so one may
compute the result more accurately as (2a + O(pn), 2b + O(pm)), with even more precision when
p = 2.

SOMOS 4.

The SOMOS 4 sequence [16] is defined by the recurrence

un+4 =
un+1un+3 + u2n+2

un
.

We shall consider the case where the initial terms u0, u1, u2 and u3 lie in Z×
p and have precision

O(pN ). Let us first examine how the absolute precision of un varies with n if it is computed
from the precision of un−4, . . . , un−1 using the recurrence. The computation of un+4 involves a
division by un and hence, roughly speaking, decreases the precision by a factor pval(un). Hence the
step-by-step computation returns the value of un with precision

O(pN−vn) with vn = val(u0) + · · ·+ val(un−4). (1)

On the other hand, one can prove that the SOMOS 4 sequence exhibits the Laurent phenomenon
[7]: for all integer n, there exists a polynomial Pn in Z[X±1, Y ±1, Z±1, T±1] such that un =
Pn(u0, u1, u2, u3). From the latter formula, it follows directly that if u0, u1, u2 and u3 are known
up to precision O(pN ) then all un’s are also known with the same precision. Thus, the term vn
that appears in (1) does not reflect an intrinsic loss of precision but some numerical instability
related to the algorithm used to compute un.

Remark 2.1. From the above discussion, one can easily derive a numerically stable algorithm that
computes the SOMOS 4 sequence:

1. compute the Laurent polynomials Pn using the recurrence in the ring Z[X±1, Y ±1, Z±1, T±1]

2. evaluate Pn at the point (u0, u1, u2, u3).

However, computing the Pn’s is very time-consuming since it requires division in a polynomial ring
with 4 variables and the size of the coefficients of Pn explodes as n grows.

In Section 4.3, we shall design an algorithm computing the SOMOS 4 sequence which turns out
to be, at the same time, efficient and numerically stable.

LU factorization.

Let us first recall that a square matrixM with coefficients inK admits a LU factorization if it can be
written as a product LU where L and U is lower triangular and upper triangular respectively. The
computation of a LU factorization appears as an important tool to tackle many classical questions
about matrices or linear systems, and is discussed further in Appendix B.4. When computing the
entries of L and U from a d × d matrix over Zp with entries of precision O(pN ), one has a choice
of algorithms:
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• using usual Gaussian elimination and tracking p-adic precision step-by-step, the smallest

precision on an entry of L(M) is about O(pN− 2d
p−1 ) on average;

• computing L(M) by evaluating Cramer-type formulae yields a result whose every entry is
known up to precision O(pN−2 logp d) [5].

If d is large compared to p, the second precision is much more accurate than the first one. On the
other hand, the second algorithm is less efficient than the first one because evaluating Cramer-type
formulae requires many computations.

2.2 Lattices

In order to make our proposals for tracking precision clear, we need some definitions from ultra-
metric analysis. See Schneider [15] for a more complete exposition.

Let K be a field with absolute value | · | : K → R≥0. We assume that the induced metric is an
ultrametric (i.e. |x + y| ≤ max(|x|, |y|)) and that K is complete with respect to it. For example,
we may take K = Qp with the p-adic absolute value or K = k((t)) with the t-adic absolute value.
Write OK for the ring {x ∈ K : |x| ≤ 1} and assume that K contains a dense subring R ⊂ K
consisting of elements that can be represented with a finite amount of space. For K = Qp we may
choose R = Z[ 1p ] or R = Q; for K = FpJtK we may choose R = Fp[t, t

−1] or R = Fp(t).
If E is a K-vector space, possibly of infinite dimension, then an ultrametric norm on E is a

map ‖ · ‖ : E → R+ satisfying:

(i) ‖x‖ = 0 if and only if x = 0;

(ii) ‖λx‖ = |λ| · ‖x‖;

(iii) ‖x+ y‖ ≤ max(‖x‖, ‖y‖).

A K-Banach space is a complete normed K-vector space. Note that any finite-dimensional normed
K-vector space is automatically complete and all norms over such a space are equivalent. A lattice
in a K-Banach space E is an open bounded sub-OK-module of E. We underline that any lattice
H in E is also closed since its complement is the union of all cosets a+H (with a 6∈ H) which are
all open. For a K-Banach space E and r ∈ R≥0, write

BE(r) = {x ∈ E : ‖x‖ ≤ r}, B−
E (r) = {x ∈ E : ‖x‖ < r}.

Note that BE(r) and B
−
E (r) are both lattices.

Suppose E is a K-Banach space and I a set. A family (xi)i∈I ⊂ E is a Banach basis for
E if every element x ∈ E can be written x =

∑

i∈I αixi for scalars αi ∈ K with αi → 0, and
‖x‖ = supi∈I |αi|. Note that if E is finite dimensional then the condition αi → 0 is vacuous.

Given a basis (xi)i∈I and a sequence (ri)i∈I with ri ∈ R>0, the sets

BE((xi), (ri)) =
{

∑

i∈I

αixi : |αi| ≤ ri
}

,

B−
E ((xi), (ri)) =

{

∑

i∈I

αixi : |αi| < ri

}

are lattices precisely when the ri are bounded. If we have equipped E with a distinguished basis

then we may drop (xi) from the notation for B
(−)
E ((xi), (ri)).

Approximate elements.

Suppose that E is a K-Banach space with basis (xi)i∈I .

Definition 2.2. • An element x ∈ E is exact if there is a finite subset J ⊆ I and scalars
αj ∈ R with

x =
∑

j∈J

αjxj . (2)

4



• An approximate element is a pair (x,H) where x ∈ E is an exact element and H is a lattice
in E.

The pair (x,H) represents an undetermined element of the coset x+H . We will frequently write
x+O(H) to emphasize the fact that H represents the uncertainty in the value of the approximate
element. In the special case that E = K = Qp, we recover the standard notation a+O(pn) for an
approximate p-adic element. Note that the set of exact elements is dense in E, so every element
of E can be approximated.

Lattices and computers.

Suppose that E ≃ Kd is finite dimensional. Then if H ⊂ E is a lattice then there exist a, b ∈ Q>0

with
BK(a)d ⊂ H ⊂ BK(b)d. (3)

Set r = a
b and Rr = OK/BK(r). Then a lattice H satisfying (3) is uniquely determined by its

image in the quotient BK(b)d/BK(a)d ≃ Rd
r . Since R ∩ OK is dense in OK , elements of Rr may

be represented exactly. Thus H may be encoded as a (d × d) matrix with coefficients in Rr. For
example, when K = Qp the ring Rr is just (Z/pnZ) for n = ⌊− logp r⌋.

2.3 Separating precision from approximation

Definition 2.2 encapsulates the two main practical suggestions of this paper with regards to repre-
senting vector spaces, matrices, polynomials and power series over K:

1. one should separate the approximation from the precision,

2. the appropriate object to represent precision is a lattice.

In the rest of this section we discuss some of the benefits made possible these choices.
Note first that using an arbitrary lattice to represent the precision of an approximate element

can reduce precision loss when compared to storing the precision of each coefficient αi in (2)
separately. Recall the map f : (x, y) 7→ (x + y, x − y) from the beginning of the section, and
write (e1, e2) for the standard basis of E = Q2

p. Since f is linear, the image of the approximation
(

(a, b), BE

(

(e1, e2), (p
−n, p−m)

))

is
(

(a + b, a− b), BE

(

(e1 + e2, e1 − e2), (p−n, p−m)
))

. For p 6= 2,

applying f again yields
(

(2a, 2b), BE

(

(e1, e2), (p
−n, p−m)

))

. By using lattices one eliminates the
loss of precision seen previously. We shall see in the next section that a similar phenomenon occurs
for non-linear mappings as well.

In addition to allowing for a more flexible representation of the precision of an element, the
separation of precision from approximation has other benefits as well. If the precision is encoded
with the approximation, certain algorithms become unusable because of their numerical instability.
For example, the Karatsuba algorithm for polynomial multiplication [9] can needlessly lose precision
when operating on polynomials with inexact coefficients. However, it works perfectly well on exact
approximations, leaving the question of the precision of the product to be solved separately. By
separating the precision, more algorithms become available.

3 Lattices and differentials

Our theory of p-adic precision rests upon a lemma in p-adic analysis: Lemma 3.4. This section
develops the theory surrounding this result; we proceed to practical consequences in Section 4.

3.1 Images of lattices under differentiable functions

Our goal in this section is to relate the image of a lattice under a differentiable map to its image
under the derivative.
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Definition 3.1. Let E and F be two K-Banach spaces, let U be an open subset of E and let
f : U → F be a map. Then f is called differentiable at v0 ∈ U if there exists a continuous linear
map f ′(v0) : U →W such that for any ε > 0, there exists an open neighborhood Uε ⊂ U containing
v0 with

‖f(v)− f(w)− f ′(v0) · (v − w) ‖ ≤ ε‖v − w‖.
for all v, w ∈ Uε. The linear map f ′(v0) is called the differential of f at v0.

Remark 3.2. This notion of differentiability is sometimes called strict differentiability; it implies
that the function x 7→ f ′(x) is continuous on U .

Definition 3.3. Let E and F be two K-Banach spaces, f : U → F be a function defined on an
open subset U of E and v0 be a point in U . A lattice H in E is called a first order lattice for f at
v0 if the following equality holds:

f(v0 +H) = f(v0) + f ′(v0)(H). (4)

We emphasize that we require an equality in (4), and not just an inclusion! With this definition
in hand, we are able to state our main lemma.

Lemma 3.4. Let E and F be two K-Banach spaces and f : U → F be a function defined on
an open subset U of E. We assume that f is differentiable at some point v0 ∈ U and that the
differential f ′(v0) is surjective.

Then, for all ρ ∈ (0, 1], there exists a positive real number δ such that, for all r ∈ (0, δ), any
lattice H such that B−

E (ρr) ⊂ H ⊂ BE (r) is a first order lattice for f at v0.

Proof. Without loss of generality, v0 = 0 and f(0) = 0. Since f ′(0) is surjective, the open mapping
theorem provides a C > 0 such that BF (1) ⊂ f ′(0)(BE(C)). Let ε > 0 be such that εC < ρ, and
choose Uε ⊂ E as in Definition 3.1. We may assume Uε = BE(δ) for some δ > 0.

Let r ∈ (0, δ). We suppose that H is a lattice with B−
E (ρr) ⊂ H ⊂ BE (r). We seek to show that

f maps H surjectively onto f ′(0)(H). We first prove that f(H) ⊂ f ′(0)(H). Suppose x ∈ H . By
differentiability at 0, ‖f(x)−f ′(0)(x)‖ ≤ ε‖x‖. Setting y = f(x)−f ′(0)(x), we have ‖y‖ ≤ εr. The
definition of C implies that BF (εr) ⊂ f ′(0)(BE(εrC)). Thus there exists x′ ∈ BE(εrC) such that
f ′(0)(x′) = y. Since εC < ρ, we get x′ ∈ B−

E (ρr) ⊂ H and then f(x) = f ′(0)(x− x′) ∈ f ′(0)(H).
We now prove surjectivity. Let y ∈ f ′(0)(H). Let x0 ∈ H be such that y = f ′(0)(x0). We

inductively define two sequences (xn) and (zn) as follows:

• zn is an element of E satisfying f ′(0)(zn) = y − f(xn) and ‖zn‖ ≤ C · ‖y − f(xn)‖ (such an
element exists by definition of C), and

• xn+1 = xn + zn.

For convenience, let us also define x−1 = 0 and z−1 = x0. We claim that the sequences (xn) and
(zn) are well defined and take their values in H . We do so by induction, assuming that xn−1 and
xn belong to H and showing that zn and xn+1 do as well. Noticing that

y − f(xn) = f(xn−1) + f ′(0)(zn−1)− f(xn)
= f(xn−1)− f(xn)− f ′(0)(xn−1 − xn)

(5)

we deduce using differentiability that ‖y − f(xn)‖ ≤ ε · ‖xn − xn−1‖. Since we are assuming that
xn−1 and xn lie in H ⊂ BE(r), we find ‖y − f(xn)‖ ≤ εr. Thus ‖zn‖ ≤ C · εr < ρr and then
zn ∈ H . From the relation xn+1 = xn + zn, we finally deduce xn+1 ∈ H .

Using (5) and differentiability at 0 once more, we get

‖y − f(xn)‖ ≤ ε · ‖zn−1‖ ≤ εC · ‖y − f(xn−1)‖,

for all n > 0. Therefore, ‖y − f(xn)‖ = O(an) and ‖zn‖ = O(an) for a = εC < ρ ≤ 1. These
conditions show that (xn) is a Cauchy sequence, which converges since E is complete. Write x for
the limit of the xn; we have x ∈ H because H is closed. Moreover, f is continuous on H ⊆ Uε

since it is differentiable, and thus y = f(x).
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We end this section with a remark on the surjectivity of f ′(v0) assumed in Lemma 3.4. First,
let us emphasize that this hypothesis is definitely necessary. Indeed, the lemma would otherwise
imply that the image of f is locally contained in a proper sub-vector-space around each point where
the differential of f is not surjective, which is certainly not true! Nevertheless, one can use Lemma
3.4 to prove a weaker result in the context that f ′(v0) is not surjective. To do so, choose a closed
sub-vector-spaceW of F such that W + f ′(v0)(E) = F . Denoting by prW the canonical projection
of F onto F/W , the composite prW ◦f is differentiable at v0 with surjective differential. For a
given lattice H , there will be various choices of W to which Lemma 3.4 applies. For each such W ,

f(v0 +H) ⊂ f(v0) + f ′(v0)(H) +W ; (6)

taking the intersection of the right hand side over many W yields an upper bound on f(v0 +H).

3.2 The case of locally analytic functions

In this section we make the constant δ in Lemma 3.4 explicit, under the additional assumption that
f is locally analytic. We extend the definition of such functions from finite-dimensional K-vector
spaces [15, §6] to K-Banach spaces.

Definition 3.5. Let E and F be K-Banach spaces. Let U be an open subset of E and let x ∈ U .
A function f : U → F is said locally analytic at x if there exists an open subset Ux ⊂ E and
continuous n-linear maps Ln : En → F for n ≥ 1 such that

f(x+ h) = f(x) +
∑

n≥1

Ln(h, . . . , h)

for all h with x+ h ∈ Ux.

Remark 3.6. A function f which is locally analytic at x is a fortiori differentiable at x, with
derivative given by L1.

For the rest of this section, we assume that K is algebraically closed. As in Definition 3.5, we
consider two K-Banach spaces E and F and a family of continuous n-linear maps Ln : En → F .
For n ≥ 1 and h ∈ E, we set fn(h) = Ln(h, . . . , h) and

‖fn‖ = sup
h∈BE(1)

‖fn(h)‖.

When the series
∑

n fn(h) converges, we denote by f(h) its sum; we shall write f =
∑

n≥0 fn. We
assume that f is defined in a neighborhood of 0. Under this assumption, the datum of f uniquely
determines the fn’s (a consequence of Proposition 3.9 below). To such a series f , we attach the
function Λ(f) : R→ R ∪ {+∞} defined by:

Λ(f)(v) = log
(

suph∈B−
E
(ev) ‖f(h)‖

)

if f is defined on B−
E (ev)

= +∞ otherwise

The following lemma is easy and left to the reader.

Lemma 3.7. Let f =
∑

n≥0 fn and g =
∑

n≥0 gn be two series as above. Then:

Λ(f + g) ≤ max(Λ(f),Λ(g))

Λ(f × g) ≤ Λ(f) + Λ(g)

Λ(f ◦ g) ≤ Λ(f) ◦ Λ(g)

Remark 3.8. Using Lemma 3.7, one can easily derive an upper bound of Λ(f) from a formula
describing f .

The function Λ(f) we have just defined is closely related to the Newton polygon of f . Recall
that the Newton polygon of f is the convex hull in R2 of the points (n,− log‖fn‖) for n ≥ 0,
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together with the extra point (0,+∞). We denote by NP(f) : R→ R∪{+∞} the convex function
whose epigraph is the Newton polygon of f .

We recall that the Legendre transform of a convex function ϕ : R→ R ∪ {+∞} is the function
ϕ⋆ : R→ R ∪ {+∞} defined by

ϕ⋆(v) = supu∈R

(

uv − ϕ(u)
)

,

for v ∈ R. One can check that the map ϕ 7→ ϕ⋆ is an order-reversing involution: (ϕ⋆)⋆ = ϕ and
ϕ⋆ ≥ ψ⋆ whenever ϕ ≤ ψ. We refer to [14] for a complete exposition on Legendre transforms.

Proposition 3.9. Keeping the above notation, we have Λ(f) = NP(f)⋆.

Proof. Note that the functions Λ(f) and NP(f)⋆ are both left continuous. It is then enough to
prove that they coincide expect possibly on the set of slopes of NP(f), a dense subset of R.

Let v ∈ R, not a slope of NP(f). We assume first that NP(f)⋆(v) is finite. We set u =
NP(f)∗(v). The function m 7→ NP(f)(m)− vm+ u has the following properties:

1. it is piecewise affine and everywhere nonnegative,

2. it does not admit 0 as a slope and

3. it vanishes at x = n for some integer n and u = vn+ log ‖fn‖.
We deduce from these facts that there exists c > 0 such that

vm− u ≤ − log‖fm‖ − c · |n−m|

for any m ≥ 0. Since vm− u = vm− vn− log‖fn‖, we get

−vn− log‖fn‖+ c · |n−m| ≤ −vm− log‖fm‖.

Therefore, for any x ∈ BE(e
v) and m ≥ 0, we have

‖fm(x)‖ ≤ e−c·|n−m| · ‖fn‖ · evn ≤ ‖fn‖ · evn.

Thus, the series
∑

m≥0 fm(x) converges and ‖f(x)‖ ≤ ‖fn‖ · evn. We then get

Λ(f)(v) ≤ log
(

‖fn‖evn
)

= vn+ log ‖fn‖ = u. (7)

On the other hand, it follows from the definition of ‖fn‖ and the fact that |K×| is dense in R (K is
algebraically closed) that there exists a sequence (xi)i≥0 in B−

E (ev) such that limi→∞ ‖fn(xi)‖ =
‖fn‖ · evn. Since ‖fm(xi)‖ ≤ e−c·|n−m| · ‖fn‖ · evn for all m and i, we get ‖fm(xi)‖ < ‖fn(xi)‖ for
i large enough. For these i, we then have ‖f(xi)‖ = ‖fn(xi)‖. Passing to the limit on i, we find
Λ(f)(v) ≥ u. Comparing with (7), we get Λ(f)(v) = u = NP(f)⋆(v).

We now assume that NP(f)⋆(v) = +∞. The function x 7→ NP(f)(x)− vx is then not bounded
from below. Since it is convex, it goes to −∞ when x goes to +∞. By the definition of NP(f), the
expression vn + log ‖fn‖ goes to infinity as n grows. It is then enough to establish the following
claim:

∀n ∈ N, Λ(f)(v) ≥ vn+ log ‖fn‖ − log 2. (8)

Let n be a fixed integer. If ‖fn‖ = 0, there is nothing to prove. Otherwise, we consider an
element xn ∈ B−

E (ev) such that ‖fn(xn)‖ ≥ 1
2‖fn‖ · evn. If the series

∑

m≥0 fm(xn) diverges, then
Λ(f)(v) = +∞ by definition and Eq. (8) holds. On the other hand, if it converges, the sequence
‖fm(xn)‖ goes to 0 as m goes to infinity. Hence it takes its maximum value R a finite number of
times; let us denote by I ⊂ N the set of the corresponding indices. For any λ ∈ OK , the series
defining f(λxn) converges and

f(λxn) ∈ BF (R) and f(λxn) ≡
∑

m∈I

λmfm(xn) (mod B−
F (R)).

The quotient BF (R)/B
−
F (R) is a vector space over the residue field k of K. Since k is infinite,

there must exist λ ∈ OK such that
∑

m∈I λ
mfm(xn) does not vanish in BF (R)/B

−
F (R). For such

an element λ, we have ‖f(λxn)‖ = R ≥ 1
2‖fn‖ · evn. The claim (8) follows.
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Remark 3.10. It follows from Proposition 3.9 that Λ(f) is a convex function.

We now study the effect of truncation on series: given f as above and a nonnegative integer
n0, we set

f≥n0
=

∑

n≥n0

fn = f − (f0 + f1 + · · ·+ fn0−1).

On the other hand, given a convex function ϕ : R → R ∪ {+∞} and a real number v, we define
ϕ≥v : R → R ∪ {±∞} as the highest convex function such that ϕ≥v ≤ ϕ and the function
x 7→ ϕ≥v(x)− vx is nondecreasing. Concretely, we have:

ϕ≥v(x) = inf
y≥0

(

ϕ(x + y)− vy
)

.

When v is fixed, the construction ϕ 7→ ϕ≥v is nondecreasing: if ϕ and ψ are two convex functions
such that ϕ ≤ ψ, we deduce ϕ≥v ≤ ψ≥v.

Proposition 3.11. With the above notations, we have Λ(f≥n0
) ≤ Λ(f)≥n0

for all n0 ∈ N.

Proof. It follows easily from Proposition 3.9 and the fact that the slopes of the Legendre transform
of a convex piecewise affine function f are exactly the abscissae of the points where f is not
differentiable.

We may now provide two sufficient conditions to effectively recognize first order lattices.

Proposition 3.12. Let f =
∑

n≥0 fn be a function as above. Let C be a positive real number
satisfying BF (1) ⊂ f1(BE(C)). Let ρ ∈ (0, 1] and ν be a real number such that

Λ(f)≥2(ν) < ν + log
( ρ

C

)

. (9)

Then the conclusion of Lemma 3.4 holds with δ = eν .

Remark 3.13. On a neighborhood of −∞, the function x 7→ Λ(f)≥2(x)− x is affine with slope 1.
This implies that, for all ρ ∈ (0, 1], there exists ν satisfying (9). Moreover, if ρ is close enough to
0, then one can take δ = eν as a linear function of ρ.

Remark 3.14. In the statement of Proposition 3.12, one can of course replace the function Λ(f)
by any convex function ϕ with ϕ ≥ Λ(f). If f is given by some formula or some algorithm, such
a function ϕ can be obtained using Remark 3.8.

Proof. Pick ε in the interval (eΛ(f)≥2(ν)−ν , ρ
C ). Going back to the proof of Lemma 3.4, we observe

that it is enough to prove that
‖f≥2(x)‖ ≤ ε · ‖x‖. (10)

for all x ∈ BE(δ). This inequality follows from Propositions 3.9 and 3.11 applied to the function

x 7→ Λ≥2(x)

x .

Remark 3.15. It follows from the proof that Proposition 3.12 is still valid if K is not assumed
to be algebraically closed. Indeed, the functions fn — and then f also — extend to an algebraic
closure K̄ of K and (10) holds over K̄, which is enough to conclude the result.

Corollary 3.16. We keep the notations of Proposition 3.12 and consider in addition a sequence
(Mn)n≥2 such that ‖fn‖ ≤ Mn for all n ≥ 2. Let NP(Mn) denote the convex function whose
epigraph is the convex hull in R2 of the points of coordinates (n,− logMn) for n ≥ 2 together with
the extra point (0,+∞).

Let ρ ∈ (0, 1] and ν be a real number such that

NP (Mn)
⋆(ν) < ν + log

( ρ

C

)

.

Then the conclusion of Lemma 3.4 holds with δ = eν .
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Remark 3.17. If K has characteristic 0 and the vector spaces E and F are finite dimensional,
then the Mn’s defined by

Mn =
1

|n!| · sup
1≤i≤dimE

|n|=n

∥

∥

∥

∂nfi
∂xn

(0)
∥

∥

∥

do the job. Here fi denotes the i-th coordinate of f , the notation n refers to a tuple of (dimF )
nonnegative integers and |n| is the sum of the coordinates of n.

4 Precision in practice

In this section we discuss applications of Lemma 3.4 and Proposition 3.12 to effective computations
with p-adic numbers and power series.

4.1 Optimal precision tracking

We consider a function f (in the sense of computer science) that takes as input an approximate
element lying in an open subset U of a K-Banach space E and outputs another approximate
element lying in an open subset V of another K-Banach space F . In applications, this function
models a continuous mathematical function f : U → V : when f is called on the input x + O(H),
it outputs x′ + O(H ′) with f(x +H) ⊆ x′ +H ′. We say that f preserves precision if the above
inclusion is an equality; it is often not the case as shown in Section 2.1.

Let us assume now that f is locally analytic on U and that f ′(x) is surjective. Proposition
3.12 then yields a rather simple sufficient condition to decide if a given lattice H is a first order
lattice for f at x. For such a lattice, by definition, we have f(x+H) = f(x)+ f ′(x)(H) and thus f
must output O(f ′(x)(H)) if it preserves precision. In this section we explain how, under the above
hypothesis, one can implement the function f so that it always outputs the optimal precision.

One-pass computation.

The execution of the function f yields a factorization:

f = fn ◦ fn−1 ◦ · · · ◦ f1

where the fi’s correspond to each individual basic step (like addition, multiplication or creation of
variables); they are then “nice” (in particular locally analytic) functions. For all i, let Ui denote
the codomain of fi. Of course Ui must contains all possible values of all variables which are defined
in the program after the execution of i-th step. Mathematically, we assume that it is an open
subset in some K-Banach space Ei. We have Un = V and the domain of fi is Ui−1 where, by
convention, we have set U0 = U . For all i, we set gi = fi ◦ · · · ◦ f1 and xi = gi(x).

When we execute the function f on the input x+O(H), we apply first f1 to this input obtaining
this way a first result x1 + O(H1) and then go on with f2, . . . , fn. At each step, we obtain a new
intermediate result that we denote by xi+O(Hi). A way to guarantee that precision is preserved is
then to ensure Hi = f ′

i(x)(Hi−1) = g′i(x)(H) at each step. This can be achieved by reimplementing
all primitives (addition, multiplication, etc.) and make them compute at the same time the function
fi they implement together with its differential and apply the latter to the “current” lattice Hi.

There is nevertheless an important issue with this approach: in order to be sure that Lemma
3.4 applies, we need a priori to compute the exact values of all xi’s, which is of course not possible!
Assuming that g′i(x) is surjective for all i, we can fix it as follows. For each i, we fix a first order
lattice H̃i for gi at x. Under our assumption, such lattices always exist and can be computed
dynamically using Proposition 3.12 and Lemma 3.7 (see also Remark 3.8). Now, the equality
gi(x + H̃i) = xi + g′i(x)(H̃i) means that any perturbation of xi by an element in g′i(x)(H̃i) is
induced by a perturbation of x by an element in H̃i ⊂ H . Hence, we can freely compute xi modulo
g′i(x)(H̃i) without changing the final result. Since g′i(x)(H̃i) is a lattice in Ei, this remark makes
possible the computation of xi.

10



Remark 4.1. In some cases, it is actually possible to determine suitable lattices H̃i together with
their images under g′i(x) (or, at least, good approximations of them) before starting the computation
by using mathematical arguments. If possible, this generally helps a lot. We shall present in §4.3
an example of this.

Two-pass computation.

The previous approach works only if the g′i(x)’s are all surjective. Unfortunately, this assumption
is in general not fulfilled. Indeed, remember that the dimension of Ei is roughly the number of
used variables after the step i. It all g′i(x) were surjective, this would mean that the function f

never initializes a new variable! In what follows, we propose another solution that does not assume
the surjectivity of g′i(x).

For i ∈ {1, . . . , n}, define hi = fn ◦ · · · ◦ fi+1, so that we have f = hi ◦ gi. On differentials,
we have f ′(x) = h′i(xi) ◦ g′i(x). Since f ′(x) is surjective (by assumption), we deduce that h′i(xi) is
surjective for all i. Let H ′

i be a lattice in Ei such that:

(a) H ′
i is contained in Hi + kerh′i(xi) = h′i(xi)

−1
(

f ′(x)(H)
)

;

(b) H ′
i is a first order lattice for hi at xi.

By definition, we have hi(xi +H ′
i) = xn + h′i(xi)(H

′
i) ⊂ xn + f ′(x)(H). Therefore, modifying the

intermediate value xi by an element of H ′
i after the i-th step of the execution of f leaves the final

result remains unchanged. In other words, it is enough to compute xi modulo H ′
i.

It is nevertheless not obvious to implement these ideas in practice because when we enter in
the i-th step of the execution of f, we have not computed hi yet and hence are a priori not able to
determine a lattice H ′

i satisfying the axioms (a) and (b) above. A possible solution to tackle this
problem is to proceed in several stages as follows:

(1) for i from 1 to n, we compute xi, f
′
i(xi−1) at small precision (but enough for the second step)

together with an upper bound of the function Λ(h 7→ fi(xi−1 + h)− fi(xi−1));

(2) for i from n to 1, we compute h′i(xi) and determine a lattice H ′
i satisfying (a) and (b);

(3) for i from 1 to n, we recompute xi modulo H ′
i and finally outputs xn +O

(

f ′(x)(H)
)

.

Using relaxed algorithms for computing with elements in K (cf [2,19,20]), we can reuse in Step (3)
the computations already performed in Step (1). The two-pass method we have just presented is
then probably not much more expansive than the one-pass method, although it is more difficult to
implement.

We conclude this section by remarking that the two-pass method seems to be particularly well
suited to computations with lazy p-adics. In this setting, a target precision is fixed and the software
determines automatically the precision it needs on the input to achieve this output precision. To
do this, it first builds the “skeleton” of the computation (i.e. it determines the functions fi and
eventually computes the xi at small precision when branching points occur and it needs to decide
which branch it follows) and then runs over this skeleton in the reverse direction in order to
determine (an upper bound of) the needed precision at each step.

Non-surjectivity.

From the beginning, we have assumed that f ′(x) is surjective. Let us discuss shortly what happens
when this assumption is relaxed. As it is explained after the proof of Lemma 3.4, the first thing
we can do is to project the result onto different quotients, i.e. to work with the composites prW ◦f
for a sufficiently large family of closed sub-vector-spaces W ⊂ F such that W + f ′(x)(E) = F . If
F has a natural system of coordinates, we may generally take the prW ’s as the projections on each
coordinate. Doing this, we end up with a precision on each individual coordinate. Furthermore,
we have the guarantee that each coordinate-wise precision is sharp, even if the lattice built from
them is not.

Let us illustrate the above discussion by an example: suppose that we want to compute the
function f : (Kn)n →Mn(K) that takes a family of n vectors to its Gram matrix. The differential
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of f is clearly never surjective because f takes its values in the subspace consisting of symmetric
matrices. Nevertheless, for all pairs (i, j) ∈ {1, . . . , n}2, one can consider the composite fij =
prij ◦f where prij : Mn(K) → K takes a matrix M to its (i, j)-th entry. The maps fij ’s are
differentiable and their differentials are generically surjective. Let M be a matrix known at some
finite precision such that f ′

ij(M) 6= 0 for all (i, j). We can then apply a one- or two-pass computation
and get fij(M) together with its precision. Putting this together, we get the whole matrix f(M)
together with a sharp precision datum on each entry.

The study of the this example actually suggests another solution to tackle the issue of non-
surjectivity. Indeed, remark that our f above had not a surjective differential simply because its
codomain was too large: if we had replaced f : (Kn)n → Mn(K) by g : (Kn)n → Sn(K) (where
Sn(K) denotes the K-vector space of symmetric matrix over K of size n) defined in the same way,
our problem would have disappeared. Of course the image of a general f is rarely a sub vector
space of F but it is often a sub-K-manifold of F (see Appendix A). We can then use the results
of Appendix A to study f viewed as a function whose codomain is f(U), understood that the
differential of it has now good probability to be surjective.

Quick comparison with floating point arithmetics.

The two strategies described above share some similarities with usual floating point arithmetics
over the reals. Indeed, roughly speaking, in each setting, we begin by choosing a large precision,
we do all our computations up to this precision understood that when we are not sure about some
digit, we choose it “at random” or using good heuristics. The main difference is that, in the
ultrametric setting, we are able (under some mild hypothesis) to quantify the precision we need at
each individual step in order to be sure that the final result is correct up to the required precision.

4.2 Precision Types

Using an arbitrary lattice to record the precision of an approximate element has the benefit of
allowing computations to proceed without unnecessary precision loss using Lemma 3.4. However,
while recording a lattice exactly is possible it does require a lot of space. For example, the space
required to store a lattice precision for a single n× n matrix with entries of size O(pN ) is O(Nn4 ·
log p). Conversely, the space needed to record that every entry has precisionO(pN ) is just O(logN).

Definition 4.2. Suppose that E is a K-Banach space, and write Lat(E) for the set of lattices
in E. A precision type for a K-Banach space E is a set T ⊆ Lat(E) together with a function
round : Lat(E)→ T such that

(∗) For every lattice H ∈ Lat(E), the lattice round(H) is a least upper bound for H under the
inclusion order: H ⊆ round(H) and if T ∈ T satisfies T ⊂ round(H) then H 6⊆ T .

Different precision types are appropriate for different problems. For example, the final step of
Kedlaya’s algorithm for computing zeta functions of hyperelliptic curves [10, §4: Step 3] involves
taking the characteristic polynomial of the matrix of Frobenius acting on a p-adic cohomology
space. Obtaining extra precision on the entries of the matrix requires a long computation, so it is
advisable to work with a precision type that does not round too much.

The following list gives examples of useful precision types. A description of the round function
has been omitted for brevity.

• The lattice precision type has T = Lat(E).

• In the jagged precision type, T consists of lattices of the shape BE((ei), (ri)) for a fixed
Banach basis (ei) of E.

• In the flat precision type, T consists of lattices BE(r). The flat precision type is useful since
it takes so little space to store and it easy to compute with.

• If E = K<d[X ] is the space of polynomials of degree less than d, the Newton precision
type consists of lattices BE((X

i), (ri)) where − log ri is a convex function of i. The Newton
precision type is sensible if one thinks of polynomials as functions K → K, since extra
precision above the Newton polygon never increases the precision of an evaluation.
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Algorithm 1: SOMOS(a, b, c, d, n,N)

Input: a, b, c, d — four initial terms of a SOMOS 4 sequence (un)n≥0

Input: n,N — two integers
Assumption: a, b, c and d lie in Z×

p and are known at precision O(pN )

Assumption: None of the ui (0 ≤ i ≤ n) is divisible by pN

Output: un at precision O(pN )

1 prec ← N ;
2 for i from 1 to n− 3 do

3 prec ← prec + vp(bd+ c2);
4 lift b, c and d arbitrarily to precision O(pprec);
5 prec ← prec− vp(a);
6 e ← bd+c2

a ; // e is known at precision O(pprec)
7 a, b, c, d ← b+O(pprec), c+O(pprec), d+O(pprec), e;

8 return d+O(pN );

• If E = Mm×n(K), the column precision type consists of lattices with identical image under
all projections pri : E → Km sending a matrix to its ith column. It is appropriate when
considering linear maps where the image of each basis vector has the same lattice precision.

• If E = QpJXK, the Pollack-Stevens precision type consists of latticesHN := BE((X
i), (pmin(i−N,0)))

[13, §1.5]. It is important when working with overconvergent modular symbols since these
lattices are stable under certain Hecke operators.

Note that sometimes the precision of a final result can be computed a priori (using the methods
of Appendix B for example). Taking advantage of such knowledge can minimize artificial precision
loss even when using rougher precision types such as flat or jagged. Separating precision from
approximation also makes it much easier to implement algorithms capable of processing different
precision types, since one can implement the arithmetic of the approximation separately from the
logic handling the precision.

4.3 Application to SOMOS sequence

We illustrate the theory developed above by giving a simple toy application. Other applications will
be discussed in subsequent articles. More precisely, we study the SOMOS 4 sequence introduced
in §2.1. Making a crucial use of Lemma 3.4 and Proposition 3.12, we design a stable algorithm for
computing it.

Recall from §2.1 that a SOMOS 4 sequence is a four-term inductive sequence defined by un+4 =
un+2un+4+u3

n+3

un
. We recall also that SOMOS sequences exhibit the Laurent phenomenon: it means

that, if the four initial terms u0, u1, u2, u3 are some indeterminates, then each un is a Laurent
polynomial with coefficients in Z in these indeterminates (see [7]). From now, we will always
consider SOMOS sequences with values in Qp (for some prime number p). We assume for simplicity
that u0, u1, u2, u3 are all units in Zp. By the Laurent phenomenon, this implies that all un’s lie in
Zp, and that if u0, u1, u2, u3 are known with finite precision O(pN ) then all un are known with the
same absolute precision. Algorithm 1 presented on page 13 performs this computation.

We now prove that it is correct. We introduce the function f : Q×
p × Q3

p → Q4
p defined by

f(a, b, c, d) = (b, c, d, bd+c2

a ). For all i, we have (ui, ui+1, ui+2, ui+3) = fi(u0, u1, u2, u3) where
fi = f ◦ · · ·◦ f (i times). Clearly, f is differentiable on Q×

p ×Q3
p and its differential in the canonical

basis is given by the matrix:

D(a, b, c, d) =









0 1 0 0
0 0 1 0
0 0 0 1

− bd+c2

a2

d
a

2c
a

b
a
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whose determinant is bd+c2

a2 . Thus, if the (i + 4)-th term of the SOMOS sequence is defined, the
mapping fi is differentiable at (u0, u1, u2, u3) and its differential ϕi = f ′

i(u0, u1, u2, u3) is given
by the matrix Di = D(ui−1, ui, ui+1, ui+2) · · ·D(u1, u2, u3, u4) · D(u0, u1, u2, u3). Thanks to the
Laurent phenomenon, we know that Di has integral coefficients, i.e. ϕi stabilizes the lattice Z4

p.
We are now going to prove by induction on i that, at the end of the i-th iteration of the loop, we
have prec = N + vp(detDi) and

(a, b, c, d) ≡ (ui, ui+1, ui+2, ui+3) (mod pNϕi(Z
4
p)). (11)

The first point is easy. Indeed, from Di = D(ui−1, ui, ui+1, ui+2)Di−1, we deduce detDi =
detDi−1 · ui

ui−3
and the assertion follows by taking determinants and using the induction hypothesis.

Let us now establish (11). To avoid confusion, let us agree to denote by a′, b′, c′, d′ and prec′

the values of a, b, c, d and prec respectively at the beginning of the i-th iteration of the loop. By
induction hypothesis (or by initialization if i = 1), we have:

(a′, b′, c′, d′) ≡ (ui−1, ui, ui+1, ui+2) (mod pNϕi−1(Z
4
p)). (12)

Moreover, we know that the determinant of ϕi−1 has valuation prec′. Hence (12) remains true if a′,
b′, c′ and d′ are replaced by other values which are congruent to them modulo pprec

′

. In particular
it holds if a′, b′, c′ and d′ denotes the values of a, b, c and d after the execution of line 4. Now
applying Lemma 3.4 and Proposition 3.12 to ϕi−1 and ϕi (at the point (u0, u1, u2, u3)), we get:

f
(

(ui−1, ui, ui+1, ui+2) + pNϕi−1(Z
4
p)
)

= (ui, ui+1, ui+2, ui+3) + pNϕi(Z
4
p).

By the discussion above, this implies in particular that f(a′, b′, c′, d′) belongs to (ui, ui+1, ui+2, ui+3)+
pNϕi(Z

4
p). We conclude by remarking first that (a, b, c, d) ≡ f(a′, b′, c′, d′) (mod pprecZ4

p) by con-

struction and second that pprecZ4
p ⊂ pNϕi(Z

4
p).

Finally (11) applied with i = n − 3 together with the fact that ϕi stabilizes Z4
p imply that,

when we exit the loop, the value of d is congruent to un modulo pN . Hence, our algorithm returns
the correct value.

We conclude this section by remarking that Algorithm 1 performs computations at precision
at most O(pN+v) where v is the maximum of the sum of the valuations of five consecutive terms
among the first n terms of the SOMOS sequence we are considering. Experiments show that the
value of v varies like c · logn where c is some constant. Assuming that we are using a FFT-like
algorithm to compute products of integers, the complexity of Algorithm 1 is then expected to be
Õ(Nn) where the notation Õ means that we hide logarithmic factors.

We can compare this with the complexity of the more naive algorithm consisting of lifting the
initial terms u0, u1, u2, u3 to enough precision and then doing the computation using a naive step-
by-step tracking of precision. In this setting, the required original precision is O(pN+v′

) where v′

is the sum of the valuation of the ui’s for i varying between 0 and n. Experiments show that v′ is
about c′ ·n logn (where c′ is a constant), which leads to a complexity in Õ(Nn+n2). Our approach
is then interesting when n is large compared to N : under this hypothesis, it saves roughly a factor
n.

A Generalization to manifolds

Many natural p-adic objects do not lie in vector spaces: points in projective spaces or elliptic curves,
subspaces of a fixed vector space (which lie in Grassmannians), classes of isomorphism of certain
curves (which lie in various moduli spaces), etc. In this appendix we extend the formalism developed
in Section 3 to a more general setting: we consider the quite general case of differentiable manifolds
locally modeled on ultrametric Banach spaces. This covers all the aforementioned examples.

A.1 Differentiable K-manifolds

The theory of finite dimensional K-manifolds is presented for example in [15, Ch. 8-9]. In this
section, we shall work with a slightly different notion of manifolds which allows also Banach vector
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spaces of infinite dimension. More precisely, for us, a differentiable K-manifold (or justK-manifold
for short) is the data of a topological space V together with an open covering V =

⋃

i∈I Vi (where
I is some set) and, for all i ∈ I, an homeomorphism ϕi : Vi → Ui where Ui is an open subset of a
K-Banach space Ei such that for all i, j ∈ I for which Vi ∩ Vj is nonempty, the composite map

ψij : ϕi(Vij)
ϕ−1

i−→ Vij
ϕj−→ ϕj(Vij) (with Vij = Vi ∩ Vj) (13)

is differentiable. We recall that the mappings ϕi above are the so-called charts. The ψij ’s are the
transition maps. The collection of ϕi’s and ψij ’s is called an atlas of V . In the sequel, we shall
assume further that the open covering V =

⋃

i∈I Vi is locally finite, which means that every point
x ∈ V lies only in a finite number of Vi’s. Trivial examples of K-manifolds are K-Banach spaces
themselves.

If V is a K-manifold and x is a point of V , we define the tangent space TxV of V at x as
the space Ei for some i such that x ∈ Vi. We note that if x belongs to Vi and Vj , the linear
map ψ′

ij(ϕi(x)) defines an isomorphism between Ei and Ej . Furthermore these isomorphisms are
compatible in an obvious way. This implies that the definition of TxV given above does not depend
(up to some canonical isomorphism) on the index i such that x ∈ Vi and then makes sense.

As usual, we can define the notion of differentiability (at some point) for a continuous mapping
between two K-manifolds by viewing it through the charts. A differentiable map f : V → V ′

induces a linear map on tangent spaces f ′(x) : TxV → Tf(x)V
′ for all x in the domain V . It is

called the differential of f at x.

A.2 Precision data

Returning to our problem of precision, given V a K-manifold as above, we would like to be able
to deal with “approximations up to some precision” of elements in V , i.e. expressions of the form
x+ O(H) where x belongs to a dense computable subset of V and H is a “precision datum”. For
now, we fix a K-manifold V and we use freely the notations I, Vi, ϕi, etc. introduced in §A.1.

Definition A.1. Let x ∈ V . A precision datum at x is a lattice in the tangent space TxV such
that for all indices i and j with x ∈ Ui ∩Uj, the image of TxV in Ei is a first order lattice for ψij

at ϕi(x) ( cf Definition 3.3).

Remark A.2. The definition of a precision datum at x depends not only on x and the manifold
V where it lies but also on the chosen atlas that defines V .

Lemma A.3. Let x ∈ V and H be a precision datum at x. The subset

ϕ−1
i

(

ϕi(x) + ϕ′
i(x)(H)

)

⊂ V

does not depend on the index i such that x ∈ Vi.

Proof. Let i and j be two indices such that x belongs to Vi and Vj . Set xi = ϕi(x) ∈ Ei and
Hi = ϕ′

i(x)(H). The equality

ϕ−1
i

(

ϕi(x) + ϕ′
i(x)(H)

)

= ϕ−1
j

(

ϕj(x) + ϕ′
j(x)(H)

)

is clearly equivalent to ψij(xi +Hi) = ψij(xi) + ψ′
ij(xi)(Hi) and the latter holds because Hi is a

first order lattice for ψij at xi.

We are now in position to define x+O(H).

Definition A.4. Let x ∈ V and H be a precision datum at x. We set

x+O(H) = ϕ−1
i

(

ϕi(x) + ϕ′
i(x)(H)

)

⊂ V

for some (equivalenty, all) i such that x ∈ Vi.
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Change of base point.

In order to restrict ourselves to elements x lying in a dense computable subset, we need to compare
x0 + O(H0) with varying x + O(H) when x and x0 are close enough. Let us first examine the
situation in a fixed given chart: we fix some index i ∈ I and pick two elements x0 and x in Vi. We
consider in addition a lattice H̃0 in Ei — which should be think as ϕ′

i(x0)(H0) — and we want to
produce a lattice H̃ such that ϕi(x0)+ H̃0 = ϕi(x)+ H̃ . Of course H̃ = H̃0 does the job as soon as
ϕi(x)−ϕi(x0) ∈ H̃0. Now, we remark that the tangent spaces Tx0

V and TxV are both isomorphic
to Ei via the maps ϕ′

i(x0) and ϕ
′
i(x) respectively. A natural candidate for H is then:

H =
(

ϕ′
i(x)

−1 ◦ ϕ′
i(x0)

)

(H0). (14)

With this choice, x+O(H) = x0+O(H0) provided that x and x0 are close enough in the following
sense: the difference ϕi(x)−ϕi(x0) lies in the lattice ϕ′

i(x0)(H0). We furthermore have a property
of independence on i.

Proposition A.5. Let x0 ∈ V and H0 be a precision datum at x0. Then, for all x sufficiently
close to x0,

(i) the lattice H defined by (14) does not depend on i and is a precision datum at x, and

(ii) we have x+O(H) = x0 +O(H0).

Proof. We first prove (i). For an index i such that x, x0 ∈ Vi, let us denote by fi : Tx0
V → TxV the

composite ϕ′
i(x)

−1 ◦ϕ′
i(x0). Given an extra index j satisfying the same assumption, the difference

fi − fj goes to 0 when x converges to x0 (see Remark 3.2). Since H0 is open in Tx0
V , this implies

that (fj − fi)(H0) contains fi(H0) and fj(H0) if x and x0 are close enough. Now, pick w ∈ fj(H0)
and write it w = fj(v) with v ∈ H0. Then w is equal to fi(v) + (fj − fi)(v) and thus belongs to
fi(H0) because each summand does. Therefore fj(H0) ⊂ fi(H0). The inverse inclusion is proved
in the same way. The fact that H is a precision datum at x is easy and left to the reader. Finally,
if x is close enough to x0, it is enough to check (ii) in the charts but this was already done.

A.3 Generalization of the main Lemma

With above definitions, Lemma 3.4 extends to manifolds. To do so, we first need to define a norm
on the tangent space TxV (where V is some K-variety and x is a point in V ). There is actually
in general no canonical choice for this. Indeed, let us consider a K-manifold V covered by charts
Ui’s (i ∈ I) which are open subset of K-Banach spaces Ei’s. If x is a point in V , the tangent
space TxV is by definition isomorphic to Ei for each index i such that x ∈ Vi. A natural norm on
TxV is then the one obtained by pulling back the norm on Ei. However, since the transition maps
are not required to be isometries, this norm depends on the choice of i. They are nevertheless all
equivalent because the transition maps are required to be continuous.

In the next lemma, we choose any of the above norms for TxV .

Lemma A.6. Let V and W be two K-manifolds. Suppose that we are given a differentiable
function f : V →W , together with a point x ∈ V such that f ′(x) : TxV → Tf(x)W is surjective.

Then, for all ρ ∈ (0, 1], there exists a positive real number δ such that, for all r ∈ (0, δ), any
lattice H in TxV such that B−

TxV
(ρr) ⊂ H ⊂ BTxV

(r) is a first order lattice for f at x.

Proof. Apply Lemma 3.4 in charts.

Remark A.7. The constant δ that appears in the lemma depends (up to some multiplicative
constant) on the norm that we have chosen on TxV . However, once this norm is fixed, and assuming
further that V and W are locally analytic K-manifolds and the mapping f is locally analytic as
well, the constant δ can be made explicit using the method of Section 3.2.

A.4 Examples

We illustrate the theory developped above by some classical examples, namely elliptic curves and
grassmannians.
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Elliptic curves.

In this example, we assume for simplicity that K does not have characteristic 2. Let a and b be
two elements of K such that 4a3 + 27b2 6= 0 and let E be the subset of K2 consisting of the pairs
(x, y) satisfying the usual equation y2 = x3 + ax+ b. Let prx : E → K (resp. pry : E → K) denote
the map that takes a pair (x, y) to x (resp. to y).

We first assume that a and b lie in the subring R of exact elements. For each point P0 = (x0, y0)
on E except possibly a finite number of them, the map prx define a diffeomorphism from an open
subset containing P0 to an open subset of K; the same is true for pry. Moreover, around each
P0 ∈ E, at least one of these projections satisfies the above condition. Hence the maps prx and
pry define together an atlas of E, giving E the structure of a K-manifold.

Let P0 be a point in E around which prx and pry both define charts. Lemma A.3 then tells
us that a precision datum on x determines a precision datum on y and vice versa. Indeed, in a
neighborhood of P0 we can write y =

√
x3 + ax+ b (for some choice of square root) and find the

precision on y from the precision on x using Lemma 3.4. We can go in the other direction as well
by writing x locally as a function of y. A precision datum at P0 is then nothing but a precision
datum on the coordinate x or on the coordinate y, keeping in mind that each of them determines
the other. Viewing a precision datum at P0 as a lattice in the tangent space is a nice way to make
it canonical but in practice we can just choose one coordinate and track precision only on this
coordinate.

We conclude this example by showing a simple method to transform a precision datum on x to
a precision datum on y and vice versa. Differentiating the equation of the elliptic curve, we get:

2y · dy = (3x2 + a) · dx. (15)

In the above dx and dy should be thought as a little perturbation of x and y respectively. Equation
(15) then gives a linear relation between the precision on x (which is represented by dx) and those
on y (which is represented by dy). This relation turns out to correspond exactly to the one which
is given by Lemma 3.4.

Finally, consider the case where a and b are themselves given with finite precision and E is
not fully determined. So we cannot consider it as a K-manifold and the above discussion does not
apply readily. Nevertheless, we can always consider the submanifold of K4 consisting of all tuples
(a, b, x, y) satisfying y2 = x3 + ax + b. The projections on the hyperplanes a = 0, b = 0, x = 0
and y = 0 respectively define charts of this K-manifold. From this, we see that a precision datum
on a point of the “not well determined” elliptic curve E is a precision datum on a tuple of three
variables among a, b, x and y.

Grassmannians.

Let d and n be two nonnegative integers such that d ≤ n. The Grassmannian Grass(d, n) is the set
of all sub-vector spaces of Kn of dimension d. It defines an algebraic variety over K and hence a
fortiori a K-manifold. Concretely, a vector space V ⊂ Kn of dimension d is given by a rectangular
matrix M ∈ Md,n(K) whose rows form a basis of V and two such matrices M and M ′ define the
same vector space if there exists P ∈ GLd(K) such that M = PM ′. Performing row echelon, we
find that we can always choose the above matrix M in the particular shape:

M =
(

Id N
)

· P (16)

where Id denotes the (d × d) identity matrix, N ∈ Md,n−d(K) and P is a permutation matrix
of size n. Moreover two such expressions with the same P necessarily coincide. Hence each
permutation matrix P defines a chart UP ⊂ Grass(d, n) which is canonically diffeomorphic to
Md,n−d(K) ≃ Kd(n−d).

In other words, if V is a subspace of Kn of dimension d, we represent it as a matrix M of the
shape (16) (using row echelon) and a precision datum at V is nothing but a precision datum on the
matrix N . If we choose another permutation matrix to represent V , say P ′, we end up with another
matrix N ′; the matrices N and N ′ are then related by a simple relation. Differentiating it, we
find a formula for translating the precision datum expressed in the chart UP to the same precision
datum expressed in the chart UP ′ . Of course, in practice, when we are doing computations on

17



subspaces of Kn (like sum or intersection), we represent the spaces in charts as above and perform
all the calculations in these charts.

B Differential of usual operations

We saw in the core of the article that the differential of an operation encodes the intrinsic loss/gain
of precision when performing this operation. The aim of this appendix is to compute the differential
of many common operations on numbers, polynomials and matrices. Surprisingly, we observe that
all differentials we will consider are rather easy to compute even if the underlying operation is quite
involved (e.g. Gröbner basis).

In what follows, we use freely the “method of physicists” to compute differentials: given a
function f differentiable at some point x, we consider a small perturbation dx of x and write
f(x+ dx) = y + dy by expanding LHS and neglecting terms of order 2. The differential of f at x
is then the linear mapping dx 7→ dy.

B.1 Numbers

The most basic operations are, of course, sums, products and inverses of elements of K. Their
differential are well-known and quite easy to compute: if z = x+ y (resp. z = xy, resp z = 1

x), we

have dz = dx+ dy (resp. dz = x · dy + dx · y, resp dz = − dx
x2 ).

Slightly more interesting is the n-th power map f from K to itself. Its differential f ′(x) is
found by differentiating the equation y = xn, obtaining dy = nxn−1dx. Hence f ′(x) maps the ball
BK(r) to BK(|nxn−1| · r). According to Lemma 3.4, this means that the behavior of the precision
depends on the absolute value of n. By the ultrametric inequality, we always have |n| ≤ 1 but may
have |n| = 0 if the characteristic of K divides n or |n| = p−k if K is p-adic with val(n) = k. In the
first case, f ′(x) also vanishes and Lemma 3.4 does not apply. In the second, Lemma 3.4 reflects
the well-known fact that raising a p-adic number to the pk-th power increases the precision by k
extra digits.

B.2 Univariate polynomials

For any integer d, let us denote by K<d[X ] the set of polynomials over K of degree < d. It is a
finite dimensional vector space of dimension d. The affine space Xd +K<d[X ] is then the set of
monic polynomials over K of degree d. We denote it by Kd[X ].

Evaluation and interpolation.

Beyond sums and products (which can be treated as before), two basic operations involving poly-
nomials are evaluation and interpolation. Evaluation models the function (P, x) 7→ P (x), where P
is some polynomial and x ∈ K. Differentiating it can be done by computing

(P + dP )(x + dx) = P (x+ dx) + dP (x+ dx) = P (x) + P ′(x)dx + dP (x). (17)

Here P ′ denotes the derivative of P . The differential at P is then the linear map (dP, dx) 7→
P ′(x)dx + dP (x).

As for interpolation, we consider a positive integer d and the partial function f : K2d → K<d[X ]
which maps the tuple (x1, y1, . . . , xd, yd) to the polynomial P of degree less than d such that P (xi) =
yi for all i. The polynomial P exists and is unique as soon as the xi’s are pairwise distinct; the above
function f is then defined on this open set. Furthermore, if (x1, y1, . . . , xd, yd) is a point in it and
P denotes the corresponding interpolation polynomial, (17) shows that dyi = P ′(xi)dxi + dP (xi)
for all i. For this, we can compute dP (xi) from dxi and dyi and finally recover dP by performing
a new interpolation.
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Euclidean division.

Let A and B be two polynomials with B 6= 0. The Euclidean division of A by B is the problem of
finding Q and R with A = BQ+R and degR < degB. Differentiating the above equality we find

dA− dB ·Q = B · dQ + dR,

which implies that dQ and dR are respectively obtained as the quotient and the remainder of the
Euclidean division of dA − dB · Q by B. This gives the differential. We note that the discussion
above extends readily to convergent series (see also [6]).

Greatest common divisors and Bézout coefficients.

We fix two positive integers n and m with n ≥ m. We consider the function f : Kn[X ]×Km[X ]→
(K≤n[X ])3 which sends a pair (A,B) to the triple (D,U, V ) where D is the monic greatest common
divisor of A and B and U and V are the Bézout coefficients of minimal degrees, computed by the
extended Euclidean algorithm. The nonvanishing of the resultant of A and B defines a Zariski
open subset V0 where the function gcd takes the constant value 1. On the contrary, outside V0,
gcd(A,B) is a polynomial of positive degree. Since V0 is dense, f is not continuous outside V0. On
the contrary, the function f is differentiable, and even locally analytic, on V0.

Of course, on V0, the first component D is constant and therefore dD = 0. To compute dU and
dV , one can simply differentiate the Bézout relation AU +BV = 1. We get:

A · dU +B · dV = −(dA · U + dB · V )

from which we deduce that dU (resp. dV ) is obtained as the remainder in the Euclidean division
of U ·dX by B (resp. of V ·dX by A) where dX = −(dA · U + dB · V ).

In order to differentiate f outside V0, we define the subset Vi of Kn[X ]×Km[X ] as the locus
where the gcd has degree i. The theory of subresultants shows that Vi is locally closed with respect
to the Zariski topology. In particular, it defines a K-manifold in the sense of Appendix A, and the
restriction of f to Vi is differentiable. To compute its differential, we proceed along the same lines
as before: we differentiate the relation AU+BV = D and obtain this way A·dU+B ·dV −dD = dX
with dX = −(dA · U + dB · V ). In the above relation, the first two terms A·dU and B·dV are
divisible by D whereas the term dD has degree less than i. Hence if dX = D · dQ + dR is the
Euclidean division of dX by D, we must have A

D · dU + B
D · dV = dQ and dD = −dR. These

relations, together with bounds on the degree of U and V , imply as before that dU (resp. dV ) are
equal to the remainder in the Euclidean division of U ·dQ by B

D (resp. of V ·dQ by A
D ).

The lesson we may retain from this study is the following. If we have to compute the great-
est common divisor of two polynomials A and B known with finite precision, we first need to
determine what is its degree. However, the degree function is not continuous — it is only up-
per semi-continuous — and hence cannot be determined with certainty from A and B, unless the
approximation to (A,B) lies entirely within V0.

We therefore need to make an extra hypothesis. The most natural hypothesis to make is that
gcd(A,B) has the maximal possible degree. The main reason for choosing this convention is that if
the actual polynomials A,B ∈ K[X ] have a greatest common divisor of degree i then there is some
precision for which the maximal degree will be equal to i, whereas if they have a positive degree
common divisor then no amount of increased precision will eliminate an intersection with V0. A
second justification is that any other choice would yield a result with no precision, since A and
B appear to lie in Vi at the known precision. Once this assumption is made, the computation is
possible and one can apply Lemma 3.4 to determine the precision of the result. Note that with the
above convention, the gcd of A and A is A itself although there exist pairs of coprime polynomials
in any neighborhood of (A,A).

Factorization.

Suppose that we are given a polynomial P0 ∈ Kd[X ] written as a product P0 = A0B0, where A0

and B0 are monic and coprime. Hensel’s lemma implies that there exists a small neighborhood U
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of P0 in Kd[X ] such that any P ∈ U factors uniquely as P = AB with A and B monic and close
enough to A0 and B0 respectively. Thus, we can consider the map f : P 7→ (A,B) defined on
the subset of U consisting of monic polynomials. We want to differentiate f at P0. For this, we
differentiate the equality P = AB around P0, obtaining

dP = A0 · dB +B0 · dA. (18)

where dP , dA and dB have degree less than degP , degA and degB respectively. If A0U0+B0V0 = 1
is a Bezout relation between A0 and B0, it follows from (18) that dA (resp. dB) is the remainder
in the Euclidean division of V0·dP by A0 (resp. of U0·dP by B0).

Finding roots.

An important special case of the previous study occurs when A0 has degree 1, that is A0(X) =
X − α0 with some α0 ∈ K. The map P 7→ A is then nothing but the mapping that follows
the simple root α0. Of course, its differential around P0 can be computed by the above method.
Nevertheless, we may obtain it more directly by expanding the equation (P0 + dP )(α0 + dα) = 0,
obtaining P ′

0(α0)dα+ dP (α0) = 0. Since α0 is a simple root, P ′
0(α0) does not vanish and we find:

dα = −dP (α0)

P ′
0(α0)

.

We now address the case of a multiple root. Let P0 be a monic polynomial of degree d and
α0 ∈ K be a root of P0 having multiplicity m > 1. Due to the multiplicity, it is no longer possible
to follow the root α0 in a neighborhood of P0. But it is if we restrict ourselves to polynomials which
have a root of multiplicity m close to α0. More precisely, let us consider the locus Vm consisting of
monic polynomials of degree d having a root of multiplicity at least m. It is a Zariski closed subset
of Kd[X ] and contains by assumption the polynomial P0. Moreover, the irreducible components of
Vm that meet at P0 are in bijection with the set of roots of P0 of multiplicity ≥ m. In particular,
α0 corresponds to one of these irreducible components; let us denote it by Vm,α0

. The algebraic
variety Vm,α0

is a fortioti a K-manifold. Moreover there exists a differentiable function f which is
defined on a neighborhood of P0 in Vm,α0

and follows the root α0, i.e. f(P0) = α0 and for all P
such that f(P ) is defined, α = f(P ) is a root of multiplicity (at least) m of P . The existence of f
follows from Hensel’s Lemma applied to the factorisation P0(X) = (X −α0)

mB0(X) where B0(X)
is a polynomial which is coprime to X − α0. We can finally compute the differential of f at P0

(along Vm,α0
) by differentiating the equality P (m−1)(α) = 0 where P (i) denotes the i-th derivative

of P . We find:

dα = −dP
(m−1)(α0)

P
(m)
0 (α0)

. (19)

The above computation has interesting consequences for p-adic precision. For example, consider
the monic polynomial P (X) = X2+O(p2N )X+O(p2N ) (whereN is some large integer) and suppose
that we are asking a computer to compute one of its roots. What is the right answer? We remark
that, if α is any p-adic number divisible by pN , then P (X) can be X2 − α2 whose roots are ±α.
Conversely, we can prove that the two roots of P are necessarily divisible by pN . Hence, the right
answer is certainly O(pN ). Nevertheless, if we know in addition that P has a double root, say α,
we can write P (X) = (X − α)2 and identifying the coefficient in X , we get α = O(p2N ) if p > 2
and α = O(p2N−1) if p = 2. This is exactly the result we get by applying Lemma 3.4 and using
(19) to simplify the differential.

This phenomenon is general: if P is a polynomial over Qp known at some finite precision O(pN ),
a root α of P having possibly multiplicity m (i.e. P (α), P ′(α), . . . , P (m−1)(α) vanish at the given
precision) can be computed at precision roughly O(pN/m). However, if we know in advance that
α has multiplicity m then we can compute it at precision O(pN−c) where c is some constant
(depending on P and α but not on N).

B.3 Multivariate polynomials

We consider the ring K[X] = K[X1, . . . , Xn] of polynomials in n variables over K and fix a
monomial order on it.
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Division.

We then have a notion of division in K[X]: if f, f1, . . . , fs are polynomials in K[X], then one may
decompose f as

f = q1f1 + · · ·+ qsfs + r

where q1, . . . , qs, r ∈ K[X] and no term of r is divisible by the leading term of some fi (1 ≤
i ≤ s). Moreover, assuming that (f1, . . . , fs) is a Gröbner basis1 of the ideal generated by these
polynomials, the polynomial r is uniquely determined and called the remainder of the division of f
by the family (f1, . . . , fs). The map (f, f1, . . . , fs) 7→ r is then well defined and we can compute its
differential, finding that dr is obtained as the remainder of the division of f−(q1 ·df1+ · · ·+qs ·dfs)
by (f1, . . . , fs).

Gröbner basis.

Recall that any ideal I ⊂ K[X] admits a unique reduced Gröbner basis. We may consider the map
sending a family (f1, . . . , fs) of homogeneous2 polynomials of fixed degrees to the reduced Gröbner
basis (g1, . . . , gt). It follows from [18, Thm. 1.1] that this map is continuous at (f1, . . . , fs) provided
that:

• the sequence (f1, . . . , fs) is regular

• for all i ∈ {1, . . . , s}, the ideal generated by f1, . . . , fi is weakly-w where w denotes the fixed
monomial order (cf [18] for more detail).

A similar argument proves that it is actually differentiable at such points. We are now going to
compute the differential. For this we remark that since the families (f1, . . . , fs) and (g1, . . . , gt)
generate the same ideal, we have a relation:

(g1, . . . , gt) = (f1, . . . , fs) ·A (20)

where A is an (s×t) matrix with coefficients in K[X]. Following Vaccon’s construction, we see that
the entries of A can be chosen in such a way that they define differentiable functions. Differentiating
(20), we get

(dg1, . . . , dgt) = (df1, . . . , dfs) ·A+ (f1, . . . , fs) · dA.
Finally, since (g1, . . . , gt) is a reduced Gröbner basis, the above equality implies that dgi is the
remainder in the division of the i-th entry of the product (df1, . . . , dfs) ·A by the family (g1, . . . , gt).

B.4 Matrices

Differentiating ring operations (sum, products, inverse) over matrices is again straightforward,
keeping in mind that matrix algebras are not commutative.

Determinants and characteristic polynomials.

We first outline the standard computation of the differential of the function det : Mn(K) → K.
Suppose that M ∈ GLn(K) and that Com(M) = det(M)M−1. Then

det(M + dM) = det(M) · det(I +M−1 · dM)

= det(M) ·
(

1 + Tr(M−1 · dM)
)

= det(M) + Tr(Com(M) · dM).

The differential of det at M is then dM 7→ Tr(Com(M) · dM). It turns out that this formula
is still valid when M is not invertible. The same computation extends readily to characteristic
polynomials, since they are defined as determinants. More precisely, let us consider the function

1A canonical choice of r exists even without this assumption. However, we do not know if the computation of
the differential that follows extends to this more general setting.

2This restriction will be convenient for us mainly because we are using the article [18], which deals only with
homogeneous polynomials. It is however probably not essential.
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χ :Mn(K)→ Kn[X ] taking a matrix M to its monic characteristic polynomial det(X−M). Then
χ is differentiable at each pointM ∈Mn(K) and its differential is given by dM 7→ Tr(Com(X−M)·
dM).

LU factorization.

Define the LU factorization of a square matrix M ∈ Mn(K) as a decomposition M = LU where
L is lower triangular and unipotent and U is upper triangular. Such a decomposition exists and
is unique provided that no principal minor of M vanishes. We can then consider the mapping
M 7→ (L,U) defined over the Zariski-open set of matrices satisfying the above condition. In order
to differentiate it, we differentiate the relation M = LU and rewrite the result as

L−1dM U−1 = L−1 · dL+ dU · U−1.

We remark that in the right hand side of the above formula, the first summand is lower triangular
with zero diagonal whereas the second summand is upper triangular. Hence in order to compute
dL and dU , one can proceed as follows:

1. compute the product dX = L−1dM U−1,

2. separate the lower and upper part of dX obtaining L−1 · dL and dU · U−1

3. recover dL and dU by multiplying the above matrices by L on the left and U on the right
respectively.

The above discussion extends almost verbatim to LUP factorization; the only difference is that
LUP factorizations are not unique but they are on a small neighborhood of M if we fix the matrix
P .

QR factorization.

A QR factorization of a square matrix M ∈ Mn(K) will be a decomposition M = QR where R
is unipotent upper triangular and Q is orthogonal in the sense that tQ ·Q is diagonal. As before,
such a decomposition exists and is unique on a Zariski-open subset of Mn(K). The mapping
f : M 7→ (Q,R) is then well defined on this subset. We would like to emphasize at this point that
the orthogonality condition defines a sub-manifold of Mn(K) which is not a vector space: it is
defined by equations of degree 2. The codomain of f is then also a manifold; this example then fits
into the setting of Appendix A but not to those of Section 3. We can differentiate f by following
the method used for LU factorization. Differentiating the relation M = QR, we obtain

tQ · dM ·R−1 = tQ · dQ +∆ · dR · R−1 (21)

where ∆ = tQ · Q is a diagonal matrix by definition. Moreover by differentiating tQ · Q = ∆,
we find that tQ · dQ can be written as the sum of an antisymmetric matrix and a diagonal one.
Since moreover dR · R−1 is upper triangular with all diagonal entries equal to 0, we see that (21)
is enough to compute dQ and dR from Q, R and dM .

B.5 Vector spaces

In computer science, vector spaces are generally represented as subspaces of Kn for some n. Hence
they naturally appear as points on some grassmannian Grass(n, d). These grassmannians are K-
manifolds in the sense of Appendix A as it is discussed in §A.4. In the sequel, we use freely the
formalism introduced there.

Left kernels.

Let d and n be two nonnegative integers such that d ≤ n. We consider the open subset Vn−d of
Mn,n−d(K) consisting of matrices of full rank, i.e. rank n− d. The left kernel defines a mapping
LK : Mn,n−d(K) → Grass(d, n). Let us prove that it is differentiable and compute its differential
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around some point M ∈Mn,n−d(K). Of course, there exists a neighborhood U of M whose image
is entirely contained in a given chart UP . We assume for simplicity that P is the identity. On U , the
map LK corresponds in our chart to the map that takes M to the unique matrix N ∈Md,n−d(K)
such that

(

Id N
)

·M = 0. The implicit function theorem then implies that LK is differentiable.

Furthermore, its differential satisfies the relation
(

0 dN
)

·M +
(

Id N
)

· dM = 0, from which we
can compute dN by projecting on the (n− d) last columns.

Following what we have already done in §B.2 for greatest common divisors of polynomials,
we can develop further this example and study what happens on the closed subset of Mn,n−d(K)
where matrices have not full rank. On this subspace, the left kernel has dimension < d and then
no longer defines a point in Grass(n, d). Nevertheless, for all integer r < n − d, we can consider
the subset Vr ⊂ Mn,n−d(K) of matrices whose rank are exactly rank r. It is locally closed in
Mn,n−d(K) with respect to the Zariski topology and hence defines a K-manifold. Furthermore, we
have a mapping LKr :Mr → Grass(n, n− r) which is differentiable and whose differential can be
computed as before.

Intersections.

We pick n, d1 and d2 three nonnegative integers such that d1 ≤ n, d2 ≤ n and d1 + d2 ≥ n. Two
subspaces of Kn of dimension d1 and d2 respectively meet along a subspace of dimension at most
d1+d2−n. For all d ≤ d1+d2−n, we can then define the subspace Vd of Grass(n, d1)×Grass(n, d2)
consisting of pairs (E1, E2) such that dim(E1 ∩ E2) = d and consider the function fd : Vd →
Grass(n, d) which sends (E1, E2) to E1 ∩ E2. In charts, the function fd can be interpreted as
the kernel of a matrix simply because E1 ∩ E2 appears as the kernel of the canonical linear map
E1 ⊕E2 → Kn. We thus deduce that fd is differentiable and that its differential can be computed
as above.

Sums and images.

Finally, we note that similar results hold for images of matrices and, consequently, sums of sub-
spaces.
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Théorie des Nombres des Bordeaux 23 (2011), no. 3, 541–577.

[3] Wieb Bosma, John Cannon, and Catherine Payoust, The Magma algebra system. I. The user language., J.
Symbolic Comput. 24 (1997), no. 3-4, 235–265.
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