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ABSTRACT

The constraint-based approach to analysis of biochemical systems has emerged as a
useful tool for rational metabolic engineering. Flux balance analysis (FBA) is based on
the constraint of mass conservation; energy balance analysis (EBA) is based on nonequi-
librium thermodynamics. The power of these approaches lies in the fact that the con-
straints are based on physical laws, and do not make use of unknown parameters. Here,
we show that the network structure (i.e., the stoichiometric matrix) alone provides a sys-
tem of constraints on the fluxes in a biochemical network which are feasible according
to both mass balance and the laws of thermodynamics. A realistic example shows that
these constraints can be even sufficient for deriving unambiguous, biologically mean-
ingful results. The thermodynamic constraints are obtained by comparing of the sign
pattern of the flux vector to the sign patterns of the cycles of the internal cycle space via
a strong connection between stoichiometric network theory (SNT) and the mathematical
theory of oriented matroids.

1. INTRODUCTION

Theoretical tools for mathematical analysis of biochemical networks traces back to

the work done by chemical kineticists in 1970’s and 1980’s [Clarke, 1980, 1988]. For a

given system in the steady state, mass balance restricts the feasible chemical fluxes to the

null space of the stoichiometric matrixS, [Clarke, 1980, 1988]. Various mathematical

approaches based on generating the vectors of the null space ofS (with certain modifica-

tions called the internal representation [Clarke, 1980], elementary modes [Schuster and

Hilgetag, 1994], and extreme pathways [Schilling et al. 2000]) have been developed.

Mavrovouniotis et al. [1990, 1992a, 1992b, 1992c] have developed a set of algorithms

for computing sets of feasible flux pathways for given biochemical objectives. These
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approaches to mass balance-based analysis are reviewed elsewhere (see, for example

Schilling et al. [1999] and references therein.) Clarke [1980, 1988] combines the null

space analysis with the analysis of dynamic stability, representing a viable approach for

extending flux balance analysis (FBA) beyond steady-state applications.

In addition to the mass balance constraint, the network structure imposes thermody-

namic constraints on the feasible set of chemical fluxes [Beard et al. 2002; Qian et al.

2003]. Katchalsky and colleagues were among the first to raise awareness of network

thermodynamics in biophysics [Katzir-Katchalsky and Curran, 1965; Oster et al. 1971];

Prigogine and his colleagues have promoted the cause of nonequilibrium thermodynam-

ics for decades [Nicolis and Prigogine, 1977]. However, none of the classic works on

metabolic pathway analysis and constraint-based analysis has explicitly treated nonequi-

librium network thermodynamics.

The “data” required for the flux balance analysis are stored in the stoichiometric ma-

trix S [Clarke, 1980, 1988; Schuster and Hilgetag, 1994; Schilling et al. 2000, 2001].

The matrixSalso provides the data needed to determine the thermodynamic constraints

[Beard et al. 2002; Qian et al. 2003]. In this paper, we make use of an oriented matroid

derived from the nullspace of the internal reaction matrixS̃. We show that the ther-

modynamic constraints can be expressed in terms of the “cycles” of the matroid. The

main theoretical result of this paper is stated as Theorem 6.1 which gives precise con-

ditions under which a flux vector obeys both the mass balance and the thermodynamic

constraints. An application to a realistic metabolic network leading to meaningful bio-

chemical “predictions” is presented.

2. PROBLEM STATEMENT

To demonstrate the need for the thermodynamic constraints, we analyze the network

with 28 reactions illustrated in Figure 1, representing energetic metabolism (glycolysis,

TCA cycle, oxidative phosphorylation, and ATP consumption). LetS be the stoichio-

metric matrix for this reaction network. If the system is in the steady state, the fluxes

satisfy the mass balance equation:

(2.1) S · J = 0
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whereJ is the vector listing the 31 fluxes (28 reactions plus 3 boundary fluxes). Con-

sider a system containing ATP, ADP, Pi, pyruvate, NAD, NADH, and various other

metabolites; given an input of one unit of glucose and six units of oxygen, what is the

maximal ATP production? In other words, for each glucose molecule consumed, what

is the maximal number of times that the internal ATPase reaction can turn over? Flux

balance analysis reveals that the production of ATP is unconstrained by steady-state

mass balance, because the ATPase reaction participates in a number of internal reac-

tion cycles. For example, consider the sub-system consisting of six species, and four

reactions:

pps(rev.) : PEP + AMP + Pi → PY R + ATP

pyk(rev.) : PY R + ATP → PEP + ADP

ak(rev.) : 2 ADP → ATP + AMP

ATPase : ATP → ADP + Pi

These reactions are encoded in a stoichiometric matrixS1 as follows.

(2.2) S1 =

PEP
AMP

Pi
PY R
ATP
ADP


−1 1 0 0
−1 0 1 0
−1 0 0 1

1 −1 0 0
1 −1 1 −1
0 1 −2 1



The null space ofS1 has dimension one, consisting of multiples of the vectorJ =

[1, 1, 1, 1]T . With no further restraint on the system, this cycle could maintain mass

balance, while proceeding with arbitrarily large flux.

This unphysical behavior can be avoided in FBA by applying irreversibility con-

straints to selected fluxes. For example, if either phosphoenolpyruvate synthase (pps)

or pyruvate kinase (pyk) were constrained so that the reverse fluxes cannot occur, then

this loop would be disqualified. However, as all reactions are in principle reversible (by

the Haldane relationship), a physical theory that allows us to exclude infeasible cycles

without bringing in a set ofad hocirreversibility constraints is preferable. Clearly, the
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above cycle is not thermodynamically feasible. The problem this paper addresses is how

to exclude thermodynamically infeasible cycles.

One way to exclude infeasible cycles is the generalized thermodynamic theory of en-

ergy balance analysis (EBA) for stoichiometric matrices, which was developed by Beard

et al. [2002] and Qian et al. [2003]. In a related approach, introduced by Mavrovounio-

tis [1996], knowledge of metabolite concentrations is translated into bounds on reaction

potentials, which in turn constrains flux directions. In contrast, the EBA approach re-

quires no prior knowledge of concentrations; EBA is based on the constraint that for a

flux vector to be feasible it must be feasible that a potential can exist. The current pa-

per shows that there is a way of imposing the thermodynamic constraints on the fluxes

that does not require explicit mention of chemical potential variables. These thermody-

namic constraints are obtained by comparing of the sign pattern of the flux vector to the

sign patterns of the cycles of the internal cycle space and relies on a strong connection

between biochemical networks and oriented matroids.

3. NETWORK ANALYSIS

The central concept introduced by Beard et al. [2002] will be presented first by the

very simple example of the network illustrated in Figure 2A. This diagram represents

five internal reactions and two external fluxes. The internal reactions are:

r1 : A → B

r2 : B → C

r3 : C → A

r4 : C → D

r5 : D → B

The external fluxesr6 andr7 transportA andB into or out of the network. All reactions

are considered reversible; the arrows indicate the direction defined as positive. The
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stoichiometric matrix for this network is:

(3.1) S =

A
B
C
D


−1 0 +1 0 0 +1 0
+1 −1 0 0 +1 0 −1

0 +1 −1 −1 0 0 0
0 0 0 +1 −1 0 0


SupposeJ is a vector of fluxes for a network in the steady state. The requirement that

S · J = 0 is equivalent to Kirchhoff’s current law.

The internal reactions correspond to a matrixS̃, which is the sub-matrix obtained

from S by omitting the last two columns (corresponding to external fluxes).

(3.2) S̃ =


−1 0 +1 0 0
+1 −1 0 0 +1

0 +1 −1 −1 0
0 0 0 +1 −1


The internal-reaction space is defined to be the null-space ofS̃, and is denotedN .

The number of internal reactions is 5, the matrixS̃ has rank 3, soN has dimension

5− 3 = 2. A basis forN may be computed from the reduced row echelon factorization

of S̃, [Strang, 1988]. The resulting vectors are the columns of a2× 5 matrixNI, where

(3.3) NI =


1 0
1 1
1 0
0 1
0 1


The columns ofNI form a basis for flux vectors that satisfy mass balance with no

transport into or out of the system.

Let µ = [µ1, µ2, µ3, µ4] be a vector of chemical potentials, associated with the species

A, B, C andD respectively. The vector∆µ of potential differences is defined by:

(3.4) ∆µ = µ · S

Specifically, for each1 ≤ j ≤ 5,

(3.5) ∆µj =
∑

i

µi · Sij

∆µj is called the (chemical) potential difference associated with the (internal) reaction

rj. Equation (3.4) says that the vector∆µ is a linear combination of the rows ofS̃, that
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is ∆µ is in the rowspace of̃S. The statement that each vector in the rowspace ofS̃ is

orthogonal to each vector in the nullspace ofS̃ says that

(3.6) ∆µ ·NI = 0

This equations is equivalent to Kirchhoff’s voltage law. If∆µj 6= 0, the ratio− Jj

∆µj

is

called theconductanceof the jth reaction.

The flux vectors which satisfy mass balance, with possibly non-zero exchange flux,

are the vectorsJ in the kernel ofS. The4 × 7 matrix S has rank 4, so its nullspace

has rank 3. A basis for the subspace of fluxes that satisfy mass balance consists of the

columns ofNS, where

(3.7) NS =



1 1 0
0 1 1
0 1 0
0 0 1
0 0 1
1 0 0
1 0 0


The columns ofNS will be calledP1, P2, P3. Mass balanced steady state flux vectors

have the form

(3.8) J = a1P1 + a2P2 + a3P3

with a1 6= 0.

We proceed to examine the constraint imposed on these fluxes by the Second Law

of Thermodynamics, which states that each internal reaction with non-zero flux must

dissipate energy. In Beard et al. [2002], this thermodynamic constraint is expressed

follows. For a flux vectorJ to be thermodynamically feasible, there must exist a vector

µ, with vector∆µ defined by∆µ = µ · S , for which the the following inequality is

satisfied. For each indexj = 1, 2, . . . , 5,

(3.9) ∆µj · Jj ≤ 0

Furthermore,Jj = 0 if and only if ∆µj = 0. This restriction onJ says that the sign

pattern (+, 0, or - ) inJ̃ is the same as the sign pattern in−∆µ.
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These thermodynamic constraints can be conveniently described by means of an ori-

ented matroid, a mathematical object intimately related to the biochemical cycles and

pathways (Oliviera et al. 2001). The oriented matroids of importance for this prob-

lem are obtained from the rowspace and the nullspace ofS̃. We include here a brief

description of oriented matroids.

4. ORIENTED MATROIDS

A sign patternα is ann-tuple,α = (α1, α2, . . . , αn), each of whose entries is taken

from the set{+,−, 0}. For each sign patternα, α+ stands for the set of indices for

which αi = +, andα− stands for the set of indices for whichαi = −. The signed

support of a sign patternα is the pair (α+, α−). If α andβ are two sign patterns, we say

thatα ⊂ β if α+ ⊂ β+ andα− ⊂ β−.

Definition 4.1. Two sign patternsα andβ are said to beorthogonal, if either

(1) The support ofα and the support ofβ have no indices in common, or

(2) There is an indexi for which α andβ have the same sign, and there is another

indexj for whichα andβ have opposite signs.

If two sign patternsα andβ are orthogonal, we writeα ⊥ β.

Euclidean space ofn dimensions is denotedRn. For each vectorv ∈ Rn, let sgn(v)

be the sign pattern whose entries are the signs (+, 0, or −) of the components ofv.

If follows immediately from 4.1 that two sign patternsα andβ are orthogonal if and

only if there is a pair of vectorsv andw in Rn, with α =sgn(v), β =sgn(w), andv is

orthogonal tow in Rn.

If ξ is a subspaceRn, a matroidM is defined as follows.

(1) A “vector” of M is a sign pattern of the form sgn(v) for some non-zero vector

v ∈ ξ. The set of all vectors ofM is denotedV.

(2) A “cycle” of M is a member ofV which has minimal support. This means thatα

is a cycle ofM if α ∈ V and there is noβ ∈ V such that the signed support of(β) is a

proper subset of the signed support of(α). The set of cycles ofM is denotedC.
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The set of cycles ofM has the following three properties, called the circuit axioms

for an oriented matroid (see Bjorner et al. [1993], p103; or Ziegler [1994] p162).

(C1) If α ∈ C then its negative−α ∈ C also.

(C2) If α, β ∈ C, with signed support(α) ⊂ signed support(β), thenα = β or

α = −β.

(C3) Supposeα, β ∈ C, with α 6= −β, andi is an index withαi = + andβi = −.

Then there isγ ∈ C, with γ+ ⊂ (α+ ∪ β+), andγ− ⊂ (α− ∪ β−), andγi = 0.

These conditions are used to calculateC from a basis forξ.

The orthogonal complement of the subspaceξ in Rn is denotedξ⊥. The dual matroid

M∗ is obtained fromξ⊥ in exactly the same way thatM is obtained fromξ. The

“vectors” of M∗ are sometimes called “co-vectors” ofM, and are denotedV∗. The

“cycles” ofM∗ are sometimes called “co-cycles” ofM, and are denotedC∗.

The fundamental property which relates the oriented matroidM to its dualM∗ is the

following. (See Bjorner et al. [1993], p 146; or Ziegler [1994], p161.)

Proposition 4.2. A sign patternα is in V if and only ifα is orthogonal to every cycle

γ ∈ C∗.

5. THERMODYNAMIC CONSTRAINTS

We consider a biochemical network that is in the steady-state, with stoichiometric

matrixS. Suppose there aren internal reactions, corresponding to the firstn columns of

S. The remaining columns correspond to external fluxes. LetS̃ be the submatrix ofS

consisting of the firstn columns ofS.

SupposeJ is a vector of fluxes that satisfies mass balance (2.1); that is,J is in the

kernel ofS. Let J̃ denote the vector inRn obtained by projectingJ onto the firstn

components, i.e., the components corresponding to the internal reactions. The thermo-

dynamic constraint (3.9) onJ asserts that there is a vector∆µ of the form∆µ = µ · S̃,

for some vectorµ of chemical potentials, such that̃J has the same sign pattern−∆µ.

This means that∆µ is in the row-space of̃S. Let ξ be the row-space of̃S, and letM be
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the matroid obtained fromξ as described in Section 4. The thermodynamic constraint

on J is that the sign pattern sgn(J̃) must be a member ofV, the set of “vectors” of the

matroidM.

This condition on sgn(J̃) can be expressed in terms of the cycles of the dual matroid

M∗ as follows. Recall thatM∗ is obtained fromξ⊥, whereξ⊥ is the null-space of̃S.

This means that a flux vectorJ is thermodynamically feasible if and only if

(5.1) sgn(J̃) ⊥ γ

for each cycle inC∗. If the condition onJ̃ is relaxed so thatJj is allowed to be0, even

if ∆µj 6= 0, then condition 5.1 takes a slightly different form. To state this condition,

sgn(J̃) and each of the cyclesγ in C∗. will be considered to be vectors inRn with

components1, 0 or −1, instead of+, 0 or −. The ordinary inner product inRn is

denoted< . , . >. The (relaxed) condition thatJ be thermodynamically feasible says

that, for each cycleγ ∈ C∗,

(5.2) | < γ, sgn(J̃) > | < | < γ, γ > |

Continuing the analysis of the example of Figure 2A, it is possible to describe explicitly

all the flux vectorsJ that are biochemically feasible. In order for a vectorJ to satisfy

mass balance it must be of the form:

J = a1P1 + a2P2 + a3P3

where{P1, P2, P3} are the vectors in a basis forN , given as the columns of the matrix

NS. ProjectingJ on the first 5 components gives

(5.3) J̃ =


a1 + a2

a2 + a3

a2

a3

a3
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A short computation using property (C3), shows that the set of cyclesC∗ are the sign

patterns of the columns (and their negatives) of the matrixC, where

(5.4) C =


1 0 1
1 1 0
1 0 1
0 1 −1
0 1 −1


The three columns ofC will be calledC1, C2, andC3 respectively, and the corresponding

sign patterns will be calledγ1, γ2, andγ3. The columns ofC are similar to the elementary

modes introduced by Schuster and colleagues [Schuster and Hilgetag, 1994; Schuster et

al. 1999; Stelling et al. 2002] in that the elementary modes satisfy a property of minimal

support similar to the cycles ofC∗.

In order that the sign pattern sgn(J̃) be orthogonal toγ2 (according to Definition 4.1),

a2 anda3 must have opposite signs, with|a2| > |a3|. In order that sgn(̃J) be orthogonal

to γ1, a1 anda2 must have opposite signs, with|a1| > |a2|; this is sufficient to make

sgn(J̃) be orthogonal toγ3 as well. If we takea3 positive , thena2 is negative anda1 is

positive, witha1 > −a2 > a3. This describes all feasible vectorsJ which have non-zero

flux for each reaction. For example

J = 3P1 − 2P2 + P3 = [1,−1,−2, 1, 1, 3, 3]T

is a feasible vector. This argument also shows that, for this example, ifJ is a feasible

vector with eachJj 6= 0, then the sign pattern ofJ must be sgn(J) = {+,−,−, +, +, +, +}
or its negative. For these fluxes, every feasible chemical potential difference function

must have sign pattern{−, +, +,−,−} or its negative. One of the (many) such func-

tions corresponding to the feasible vectorJ is ∆µ = [−3, 2, 1,−1,−1], coming from

the (chemical) potential functionµ = [−2, 1,−1, 0].

Under the relaxed condition (5.2), the flux vector

J = 2P1 − P2 + P3 = [1, 0,−1, 1, 1, 2, 2]T

is feasible. In this situation, it may be appropriate to eliminate the equationr2, and

consider the network with one less reaction.
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On the other hand, the flux vector

K = 3P1 − P2 + 2P3 = [2,−1, 1, 2, 2, 3, 3]T

satisfies mass balance, but is not thermodynamically feasible, becauseK is not orthog-

onal to the cycleγ3, nor does it satisfy (5.2).K violates the thermodynamic constraint,

even thoughK is a linear combination of the feasible flux vectors.

6. CONCLUSIONS

The previous section has established the following. SupposeS is the stoichiometric

matrix for a biochemical network, and̃S is the submatrix corresponding to the internal

reactions. LetM∗ be the matroid derived from the nullspace ofS̃, andC∗ be the set of

cycles ofM∗ as in Section 4.

Theorem 6.1.A flux vectorJ is feasible according to steady state mass balance and the

thermodynamic constraint if and only if

(1) S · J = 0 and

(2) sgn(J̃) is orthogonal toγ for eachγ ∈ C∗.

If Jj is allowed to be0, even if∆µj 6= 0, then condition (2) is replaced by (2’):

(2’) | < γ, sgn(J̃) > | < | < γ, γ > | for eachγ ∈ C∗.

If a flux vectorJ satisfies conditions (1) and (2), we will say thatJ is strictly feasible,

while if it only satisfies (1) and the relaxed condition (2’), we will say thatJ is T-

feasible, or simply feasible. The set of T-feasible vectors includes the strictly feasible

vectors and the vectors on the boundary of the strictly feasible set.

The conditions of Theorem (6.1) serve as a useful thermodynamic constraints because

they are violated if an only if a flux vector contains a thermodynamically infeasible

cycle. In fact, the second condition (2 or 2’) is not limited to steady state fluxes. The

thermodynamic feasibility condition applies whether or not the system is in a steady

state.
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In the example of Figure 2, the flux vectorsJ1 = [1, 0, 0, 0, 0, 1, 1] andJ2 = [0, 1, 1, 0, 0,−1,−1]

are both T-feasible (but not strictly feasible). The sumJ3 = [1, 1, 1, 0, 0, 0, 0] is not T-

feasible. Thus flux vectors constructed from linear combinations of feasible fluxes are

not guaranteed to be feasible. Therefore a solution constructed from sums of elemen-

tary modes that are known to be feasible is not guaranteed to satisfy the thermodynamic

constraints. Some form of thermodynamic constraint must be imposed to guarantee that

the fluxes are physically realizable. The advantage of the approach presented here is

that these constraints are easy to implement and do not explicitly use chemical potential

variables. The disadvantage is that the complete internal cycle space, with all possible

sign patterns, must be computed, which can be challenging for large-scale systems.

The method that we have used for generating the cycles involves exhaustively comput-

ing linear combinations of null space vectors and compiling the complete set of cycles

as defined in Section 4. Since the computational complexity of this search scales expo-

nentially, developing efficient algorithms will be an important goal of future research.

Returning to the original problem of ATP production in energy metabolism (Figure

1), and searching for the flux vector that maximizes ATP production while satisfying the

mass balance constraint (Equation (2.1)) and the thermodynamic constraint (Equation

(5.1)), we find that at most 20.5 ATP are produced for each glucose molecule consumed.

Thus, by applying thermodynamic constraints, there is no need to introduce anad hoc

set of irreversibility constraints to obtain biochemically reasonable results in constraints-

based analysis of biochemical networks. In fact, even when arbitrary irreversibility

constraints are applied, the thermodynamic feasibility of nonequilibrium fluxes can be

evaluated only by explicitly considering the network thermodynamics. In this paper,

we have demonstrated that the thermodynamic constraints, which arise from the sign

patterns of the internal cycle space, can be obtained directly from the stoichiometric

matrixS.
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FIGURE LEGENDS

Figure 1: Energy metabolism network. These reactions are a subset of the Escherichia

coli K-12 metabolic network compiled by Palsson et al., and available on the world-wide

web at http://gcrg.ucsd.edu/organisms/ecoli.html.

Figure 2: A. Example network structure, with five internal reactions (labeled 1-5) and

two transport, or boundary, fluxes (labeled 6 and 7). B. The complete set of distinct

internal cycles, pathways for the network in A. C. The complete set of throughput path-

ways for the network in A.
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FIGURE 1
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FIGURE 2
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