Fouier analysis of waveforms of periodic sequences

We consider the waveforms generated by periodic integer sequences $a_{n}=m n$ where m is an integer greater than 1. (We use the term periodic integer sequence here to refer to an increasing positive integer sequence with the property that there is an integer P such that, for all k is in the sequence, $k+P$ is in the sequence; this property results in a periodic waveform using our method).
Let R be the number of samples per second. (e.g., 44100). Let $S \subset \mathbb{R}$ be defined by

$$
S=\left\{x \in \mathbb{R}: \frac{m n-\frac{1}{2}}{R} \leq x \leq \frac{m n+\frac{1}{2}}{R} \text { for some } n \in \mathbb{Z}\right\}
$$

Then the waveform f generated by the sequence a_{n} is a constant times the characteristic function of S, say

$$
f(t)=A \chi_{S}(t)
$$

The waveform looks like this, continuing periodically in both the positive and negative directions:

For our standard audio file generating method, we have $A=\frac{20000}{32768}$ and $W=\frac{1}{44100}$ seconds. The value of P, the period, depends on the sequence: $P=\frac{m}{44100}$.
We can find the fourier series of f :

$$
f(t)=\frac{A_{0}}{2}+\sum_{k=1}^{\infty} A_{k} \cos k \omega_{1} t+B_{k} \sin k \omega_{1} t
$$

where $\omega_{1}=\frac{2 \pi}{P}$ and the fourier coefficients are given by

$$
\begin{aligned}
A_{0} & =\frac{2}{P} \int_{0}^{P} f(t) d t \\
A_{k} & =\frac{2}{P} \int_{0}^{P} f(t) \cos k \omega_{1} t d t \\
B_{k} & =\frac{2}{P} \int_{0}^{P} f(t) \sin k \omega_{1} t d t
\end{aligned}
$$

These integrals may be evaluated over any interval of length P, and it is easier in our case to use $-\frac{P}{2} \leq t \leq \frac{P}{2}$.
Thus we find:

$$
\begin{aligned}
A_{0} & =\frac{2}{P} \int_{-P / 2}^{P / 2} f(t) d t=\frac{2 A W}{P}=\frac{2 A}{m} \\
A_{k} & =\frac{2}{P} \int_{-P / 2}^{P / 2} f(t) \cos k \omega_{1} t d t=\frac{4}{P} \int_{0}^{W / 2} f(t) \cos k \omega_{1} t d t=\frac{4 A \sin \left(k \omega_{1} \frac{P}{2}\right)}{P}=\frac{2 A}{\pi k} \sin \left(\pi k \frac{W}{P}\right) \\
B_{k} & =\frac{2}{P} \int_{-P / 2}^{P / 2} f(t) \sin k \omega_{1} t d t=0
\end{aligned}
$$

Hence, we have, more simply

$$
f(t)=\frac{A_{0}}{2}+\sum_{k=1}^{\infty} A_{k} \cos \left(2 \pi k \frac{44100}{m} t\right)
$$

where

$$
A_{0}=\frac{2 A}{m}, A_{k}=\frac{2 A}{k \pi} \sin \left(\frac{k \pi}{m}\right) \text { for } k \geq 1
$$

The function $\cos (a t)$ has frequency $\frac{a}{2 \pi}$, so the fundamental frequency of the function f above is $\frac{44100}{m}$: the fourier series is a sum of cosine waves, one for every positive multiple of this frequency.
Since $44100 / 2=22050$ is above the range of hearing (for most people), we actually only have to consider at most $m / 2$ harmonics: adding additional harmonics will not make any audible difference in the waveform.
Since $\frac{1}{k} \sin \left(\frac{\pi k}{m}\right)$ is approximately equal to $\frac{\pi}{m}$ when $k=1$ and it equals $\frac{2}{m}$ when $k=\frac{m}{2}$, the amplitudes of these harmonics are fairly similar, the largest being around 60 percent larger than the smallest. This results in spectrograms with fairly similarly weighted spectral lines.

