
Introduction to Linear Programming



Linear Programming is the study of optimization
problems in which the objective function and all
constraints are linear.

A linear function in n variables is one of the form

f (x1, x2, . . . , xn) = c1x1 + c2x2 + · · ·+ cnxn

for some constants c1, c2, . . . , cn.

A linear inequality in n variables if one of the form

f (x1, x2, . . . , xn) ≤ b or f (x1, x2, . . . , xn) ≥ b

where f is a linear function and b is a constant.

Linear Programming is concerned with optimizing a
linear function subject to a set of constraints given by
linear inequalities.
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A linear program (an LP) is a linear optimization
problem taking the following form:

Maximize (or minimize)
f (x1, x2, . . . , xn) = c1x1 + c2x2 + · · ·+ cnxn subject to

a1,1x1 + a1,2x2 + · · · a1,nxn
≤
≥

b1

a2,1x1 + a2,2x2 + · · · a2,nxn
≤
≥

b2

:

:

am,1x1 + am,2x2 + · · · am,nxn
≤
≥

bm

x1, x2, . . . xn ≥ 0

The inequalities, except for the last one, can be greater
than or equal or less than or equal.



This general form is often expressed with vectors and
matrices:

Maximize (or minimize) cT~x

subject to A~x
≤
≥
~b

and ~x ≥ 0

This looks very concise but it obscures a lot of things we
will want to talk about, so I will not use this form at all.
You will run across it in some papers and books on the
subject.
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LP example
Suppose we are making salsa and guacamole (dips or
sauces originally from Mexico).

One unit of salsa requires 5 tomatoes and 1 clove of garlic.

One unit of guacamole requires 1/2 tomato and 4 cloves
of garlic.

We only have 30 tomatoes and 20 cloves of garlic.

We have an unlimited supply of all other ingredients (salt,
cilantro, lime juice, etc.)

How many units of salsa and guacamole should we make
to maximize the total number of units (salsa+guacamole)
we make?

Fractional units are okay.
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Let x1 be the number of units of salsa we make.

Let x2 be the number of units of guacamole we make.

Then the quantity we want to maximize is x1 + x2.

This is our objective function.

We see that we cannot simply make x1 and x2 huge due to
our limited amount of garlic and tomatoes.
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If we make x1 units of salsa and x2 units of guacamole,
then the amount of tomatoes we’ll need is

5x1 +
1
2

x2.

Since we only have 30 tomatoes, we have the following
constraint

5x1 +
1
2

x2 ≤ 30.

Similarly, since we have a limited amount of garlic, we
have another constraint:

x1 + 4x2 ≤ 20.

We also require x1, x2 ≥ 0 since we cannot make a
negative amount of salsa or guacamole.
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Thus, the LP we wish to solve is:

Maximize x1 + x2

subject to:

5x1 +
1
2

x2 ≤ 30

x1 + 4x2 ≤ 20
x1, x2 ≥ 0

Since the non-negative constraints are always with us, we
will often refer to such an LP as having two variables and
two constraints.



In this course, we will not be concerned with the methods
used or solving LPs.

Instead, we will focus on lots of different applications of
the LP idea, and we will use software to solve the LPs for
us.

In Math 407, you will learn methods for solving LPs.
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Just once, though, let’s look at how we might solve our
salsa and guacamole LP “by hand”.

A classic approach (for two-variable LPs) is to consider
the LP graphically.

We begin by making a sketch of our inequalities.
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On a set of x1, x2 axes, we draw the lines that define our
constraints, and indicate with shading which side of the
line satisfies the constraints.



The feasible region is the set of points (x1, x2) that satisfy
both constraints. This is the doubly-shaded portion in the
picture.

The points in the feasible region represent combinations
of amounts of salsa and quacamole that we can make.

Other points are not feasible.
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We note that our objective function x1 + x2 is an increasing
function of x1 and x2.

This means that, if (x1, x2) is a point in the feasible region,
it will not yield the maximum value of x1 + x2 unless the
point is “pushed up” against one of the constraint lines.

That is, if (x1, x2) is in the feasible region, and not on one
of the constraint lines, then we can increase the value of
x1 + x2 by increasing x1 or x2. Hence, that point does not
yield the maximum.

So, the maximum must occur on one of the line segments
bounding the feasible region.
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Where does the maximum occur?

Let’s consider the function f (x1, x2) = x1 + x2.

If we draw level curves of this function, i.e., curves given
by f (x1, x2) = k for various values of k, we see that these
are all lines with slope −1.
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Let’s draw one of these level curves, the one given by
f (x1, x2) = 0. Here it is in red.

I haven’t been careful to make my picture to scale, so
we’ll need to be careful what conclusions we make here.
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Now, if we increase k, the line f (x1, x2) = k moves away
from the origin into the first quadrant.

For a while, the line intersects the feasible region: there
are combinations of salsa and guacamole that we can
make to achieve a total output of k units.

But eventually, the line f (x1, x2) = k will intersect the
feasible region for the last time, and then for any larger k
will not intersect the feasible region at all.

We want to figure out what this largest value of k is. This
is the maximum we are looking for.
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Looking at the drawing again, we can convince ourselves
that the level curves (the moving red line) will intersect
the feasible region last in one of a few ways: either at the
point P, at (6, 0), at (0, 5), or by meeting up with one of
the two constraint lines.



We can note that the two constraint lines have slope −10
and −0.25.

Since the level curves have slope −1, and
−10 < −1 < −0.25, we can conclude that the level curves
will last hit the feasible region at P, the intersection of the
two constraint lines.

Calculating the intersection of the two constraint lines, we
find P =

(
220
39 ,

140
39

)
≈ (5.64, 3.59).

Thus, to maximize our production of salsa and
guacamole, we should make 5.64 units of salsa and 3.59
units of guacamole, for a total of 9.23 units of stuff.
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We see that it is the slopes of the level curves of our
objective function f (x1, x2) determine the nature of the
solution.

Suppose we change the situation slightly.

Suppose now we want to sell our salsa and guacamole,
say at $p per unit of salsa and $q per unit of guacamole.
What should we produce to maximize the money we
make from our sales (we’ll assume we will sell all we
make)?

Now, the objective function is f (x1, x2) = px1 + qx2 and
level curves have slope −p

q .

So, depending on the relationship between the value of
−p

q and the slopes of the constraint lines, our solution
might be the same as earlier, or it might be to create all
salsa, or all guacamole.
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We see then that it is a combination of the objective
function and the constraints that determine the solution
to an LP.

Next time: more complex LPs that we will not try to solve
by hand.
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