
Math 301 A - Spring 2014
Final Exam

June 11, 2014
Solutions

1. Prove that the product of three consecutive integers is divisible by 60 if the middle integer is a
perfect square.

Proof: Let n be a perfect square, and let P = (n − 1)n(n + 1) be the product of the three
consecutive integers with n in the middle.

Since n is a perfect square, n is congruent to 0 or 1 modulo 4.

If n ≡ 0 (mod 4), then 4|P .

If n ≡ 1 (mod 4), then n− 1 ≡ 0 (mod 4), and so 4|n− 1, and hence 4|P .

Thus, 4|P .

We have that n is congruent to 0, 1, or 2 modulo 3. If n ≡ 0 (mod 3), then 3|n and 3|P .

If n ≡ 1 (mod 3), then 3|n− 1, and 3|P .

If n ≡ 2 (mod 3), then 3|n+ 1, and 3|P .

Thus 3|P .

Looking at squares modulo 5, we see:

n n2 mod 5
0 0
1 1
2 4
3 4
4 1

Hence, n is congruent to 0, 1, or 4. For each value we have n, n − 1, and n + 1 congruent
to 0 modulo 5, respectively.

Hence, 5|P .

Since 3|P , 4|P and 5|P , and (3, 4, 5) = 1, we conclude that 3 · 4 · 5 = 60|P . �

2. Let i be a non-negative integer. Prove that the number

8 · 64i + 25 · 7i

is not prime.

Proof: We can start by observing that

8 · 640 + 25 · 70 = 33 ≡ 0 (mod 3)

8 · 641 + 25 · 71 = 687 ≡ 0 (mod 3)

8 · 642 + 25 · 72 = 33993 ≡ 0 (mod 3)



and this gives us the idea that perhaps 8 · 64i + 25 · 7i is always divisible by 3.

Reducing modulo 3, we find that 8 · 64i + 25 · 7i ≡ 2 · 1i + 1 · 1i ≡ 3 ≡ 0 (mod 3).

Hence, 3 always divides 8 · 64i + 25 · 7i for non-negative i.

Since 8 · 64i + 25 · 7i ≥ 8 · 640 + 25 · 70 = 33 > 3, we conclude that 8 · 64i + 25 · 7i is never
prime for non-negative i. �

3. Suppose x is the smallest integer greater than 10000 such that

3x ≡ 5 (mod 61) and 5x ≡ 3 (mod 62).

Find x.

Multiplying 3x ≡ 5 (mod 61) by 20 yields 60x ≡ 100 (mod 61) and subtracting this from
61x ≡ 61 (mod 61) yields

x ≡ −39 ≡ 22 (mod 61).

Thus x = 22 + 61k for some integer k.

Using the second given congruence yields

5(22 + 61k) ≡ 3 (mod 62)

110 + 305k ≡ 3 (mod 62)

57k ≡ 17 (mod 62)

Sutracting this last congruence from 62k ≡ 62 (mod 62) yields

5k ≡ 45 (mod 62)

and since 5 divides 45, and (45, 62) = 1, we conclude

k ≡ 9 (mod 62).

Thus k = 9 + 62m for some integer m, and hence x = 22 + 61(9 + 62m) = 571 + 3782m.

Since 2 < 10000/3782 < 3, and 8135 = 571+3782·2 and 11917 = 571+3782·3, we conclude
that x = 11917.

4. Find the largest integer that cannot be expressed as a sum of non-negative multiples of 5, 7 and
13. Prove that this is the largest such integer.

16 is the largest such integer.

First we prove that 16 cannot be expressed as a sum of non-negative multiples of 5, 7, and
13.

Suppose 16 = 5a+ 7b+ 13c where a, b and c are non-negative integers.

Since 2 · 13 = 26 > 16, we conclude that c = 0 or c = 1.

Suppose c = 1. Then 3 = 5a + 7b, but 5a + 7b >= 5 unless a = b = 0, in which case 3 = 0,
a contradiction. So c 6= 1.

Suppose c = 0. Then 16 = 5a + 7b. Since 7 · 3 = 21 > 16, b = 0, 1, or 2. If b = 0, then
a = 16/5 which is not an integer. If b = 1, then a = 9/5 which is not an integer. If b = 2,
then a = 2/5 which is not an integer. In all three cases, we have a contradiction. So c 6= 0.



Thus we arrive at the contradiction that c = 0 or c = 1 and c 6= 0 and c 6= 1.

Hence our assumption that 16 was so expressible was false, and we conclude that 16 is
not so expressible.

Now,

17 = 5 · 2 + 7 · 1 + 13 · 0

18 = 5 · 1 + 7 · 0 + 13 · 1

19 = 5 · 1 + 7 · 2 + 13 · 0

20 = 5 · 4 + 7 · 0 + 13 · 0

and 21 = 5 · 0 + 7 · 3 + 13 · 0.

Let m > 21 be an integer. Then m is congruent to one of 17, 18, 19, 20, or 21 modulo
5. Say m is congruent to z modulo 5, and 17 ≤ z ≤ 21 and z = 5r + 7s + 13t. Then
m = 5r + 7s + 13t + 5u = 5(r + u) + 7s + 13t for some positive integer u, and so every
integer greater than 16 can be represented as the sum of non-negative multiples of 5, 7,
and 13.

5. Suppose (x, y, z) is a primitive Pythagorean triple, with z > x and z > y. Prove that 3 divides
exactly one of x and y, and 3 does not divide z. (If you wish to use a result proved in homework,
you will need to prove it again here.)

Proof: We could prove this using our theorem on primitive pythagorean triples, but here
I’ll give a proof that doesn’t use this.

Suppose (x, y, z) is a primitive pythagorean triple, with z > x and z > y.

Then x2 + y2 = z2, and the gcd of x,y, and z is 1.

As a result, we know that 3 does not divide all three values, x, y, and z.

The squares modulo 3 are 0 and 1.

Note that, for any integer n, 3|n iff 3|n2.

Adding these, we have the following table of possibilities:

+ 0 1
0 0 1
1 1 2

This tells us several things. First, that, since z2 is the sum of two squares, it is not congru-
ent to 2 mod 3, and hence x or y is congruent to 0 mod 3. However, x and y cannot both
be congruent to 0 mod 3; for in that case, z would also be congruent to 0, and the triple
would not be primitive. Hence, exactly one of x and y is divisible by 3, and as a result z
is not divisible by 3. �

6. Prove that there are no solutions to 5x2 + 7y2 = z2 with x, y, z ∈ Z and xyz 6= 0.

Proof: Suppose 5x2+7y2 = z2 for some x, y, z ∈ Z, and xyz 6= 0, with z as small as possible
(i.e., suppose that if 5a2 + 7b2 = c2 with a, b, c ∈ Z and abc 6= 0, then c ≥ z).

We may assume without loss of generality that x > 0, y > 0 and z > 0. (For, if any of x, y
and z is negative, we can replace it by its absolute value.)



Then 7y2 ≡ z2 (mod 5), i.e.
2y2 ≡ z2 (mod 5).

In problem 1, we noted that the squares modulo 5 are 0, 1, and 4. Hence that possible
values of 2y2 modulo 5 are 0, 2, and 3.

But, since 2y2 ≡ z2 (mod 5), 2y2 ≡ z2 ≡ 0 (mod 5).

Hence, 5|y2, and so 5|y. Also, 5|z2, and 5|z.

Write y = 5y′ and z = 5z′ for some integers y′ and z′.

Then

5x2 + 7(5y′)2 = (5z′)2

5x2 + 25 · 7y′2 = 25z′2

x2 + 5 · 7y′2 = 5z′2

and so 5|x2 and 5|x.

Write x = 5x′ for some integer x′.

Then
5(5x′)2 + 7(5y′)2 = (5z′)2

so
5(x′)2 + 7(y′)2 = (z′)2.

However, since z > 0, z′ < z, and this is a contradiction to our assumption that we had
the solution with the smallest possible z.

Hence, there is no solution to 5x2 + 7y2 = z2, with x, y, z ∈ Z, and xyz 6= 0. �

7. Define the sequence {an} by

a0 = 1, a1 = 1, and an = an−1 − an−2 for n ≥ 2.

Express the generating function for {an} as a rational function (i.e., not as a series).

Let A(x) =
∞∑

n=0

anx
n.

From an = an−1 − an−2 for n ≥ 2, we have

∞∑

n=2

=
∞∑

n=2

an−1x
n −

∞∑

n=2

an−2x
n

=
∞∑

n=1

anx
n+1 −

∞∑

n=0

anx
n+2

A(x)− x− 1 = x(A(x)− 1)− x2(A(x))

A(x)− xA(x) + x2A(x) = −x+ x+ 1

A(x) =
1

1− x+ x2
.


