1. Let \(A \) be the statement \((P \lor (Q \land P)) \land (Q \lor P)\).

(a) Write out the truth table for \(A \).

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(Q)</td>
<td>(Q \land P)</td>
<td>(P \lor (Q \land P))</td>
<td>(Q \lor P)</td>
<td>((P \lor (Q \land P)) \land (Q \lor P))</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

(b) Write a simpler expression which is equivalent to \(A \).

We can see from the table that \((P \lor (Q \land P)) \land (Q \lor P)\) is equivalent to \(P\).

2. (a) Show that, for sets \(A, B \) and \(C \),

\[(A \setminus B) \cap C = (A \cap C) \setminus B\]

using logical symbols and equivalences.

\[
x \in (A \setminus B) \cap C \\
\iff x \in A \land x \notin B \land x \in C \\
\iff (x \in A \land x \in C) \land x \notin B \\
\iff (x \in A \cap C) \land x \notin B \\
\iff x \in (A \cap C) \setminus B.
\]

Hence, \((A \setminus B) \cap C = (A \cap C) \setminus B\).

(b) Show that, for sets \(A, B \) and \(C \),

\[(B \cup C) \setminus (A \setminus B) = B \cup (C \setminus A)\]

using logical symbols and equivalences.

\[
x \in (B \cup C) \setminus (A \setminus B) \\
\iff (x \in B \lor x \in C) \land x \notin (A \setminus B) \\
\iff (x \in B \lor x \in C) \land \lnot(x \in A \land x \notin B) \\
\iff (x \in B \lor x \in C) \land (x \notin A \lor x \in B) \\
\iff (x \in B) \lor (x \in C \land x \notin A) \\
\iff x \in B \cup (C \setminus A).
\]

Hence, \((B \cup C) \setminus (A \setminus B) = B \cup (C \setminus A)\).
3. Write a useful negation of each of the following statements using idiomatic mathematical English.

(a) *For every real number* \(x \), *there exists a real number* \(y \) *which is greater.*

 There exists a real number \(x \) such that, for every real number \(y \), \(y \leq x \).

(b) *Every integer greater than 1 is either prime or composite.*

 There exists an integer greater than 1 which is not prime and not composite.

(c) *There exists a unique integer* \(n \) *which is divisible by 5 and 7.*

 Either there exists no integer which is divisible by 5 and 7 or there exists more than one integer which is divisible by 5 and 7.

(d) *Some functions are differentiable.*

 All functions are not differentiable.

4. Find a formula involving only the connectives \(\neg \) and \(\to \) that is equivalent to

\[
(P \lor Q) \land \neg(P \land Q)
\]

There are many correct answers. One is

\[
\neg((\neg P \to Q) \to \neg(P \to \neg Q))
\]

which can be arrived at like this:

\[
(P \lor Q) \land \neg(P \land Q) \\
\Leftrightarrow (P \lor Q) \land (\neg P \lor \neg Q) \\
\Leftrightarrow \neg((P \lor Q) \lor (\neg P \lor \neg Q)) \\
\Leftrightarrow \neg(((P \lor Q) \to \neg(P \lor \neg Q)) \\
\Leftrightarrow \neg((\neg P \to Q) \to \neg(P \to \neg Q))
\]

5. Simplify the expression below as much as you can.

\[
\neg(\neg P \land Q) \lor (P \land \neg R)
\]

This expression can be simplified to \(P \lor \neg Q \), or, equivalently, \(Q \to P \).