1. (Short answer)

(a) Let A be the set $\{a, b\}$. List every element of the power set of A.

$$\emptyset, \{a\}, \{b\}, \{a, b\}$$

(b) Use truth tables to show that $\neg P \lor Q$ and $\neg (P \land \neg Q)$ are equivalent.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$\neg P \lor Q$</th>
<th>$\neg Q$</th>
<th>$P \land \neg Q$</th>
<th>$\neg (P \land \neg Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

(c) Give a useful negation of this statement:

"For every integer n, there is an integer m such that $m | n$.

One negation is: "There exists an integer n, such that, for all integers m, m does not divide n.”

2. Prove that, for any sets A and B,

$$\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B).$$

Proof. Suppose $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then $x \in \mathcal{P}(A)$ or $x \in \mathcal{P}(B)$.

Suppose $x \in \mathcal{P}(A)$.

Then $x \subseteq A$.

Suppose $y \in x$. Then $y \in A$, so $y \in A \cup B$. Hence, $x \subseteq A \cup B$.

Therefore, $x \in \mathcal{P}(A \cup B)$.

An identical argument shows that if $x \in \mathcal{P}(B)$, then $x \in \mathcal{P}(A \cup B)$.

Thus, if $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$, then $x \in \mathcal{P}(A \cup B)$.

Therefore, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. \square

3. Prove that, for all integers n, $n^2 - 2$ is not divisible by 3. (HINT: Every integer can be written in the form $3k + r$, for k and r integers, and $r = 0, 1, \text{ or } 2$).
Proof. Let \(n \) be an integer. Then \(n = 3k + r \) for integers \(k \) and \(r \) with \(r = 0, 1 \) or \(2 \).

Suppose \(r = 0 \). Then \(n = 3k \), so \(n^2 - 2 = 9k^2 - 2 \) and
\[
\frac{n^2 - 2}{3} = 3k^2 - \frac{2}{3}
\]
which is not an integer. So 3 does not divide \(n^2 - 2 \).

Suppose \(r = 1 \). Then \(n = 3k + 1 \), so \(n^2 - 2 = 9k^2 + 6k - 1 \) and
\[
\frac{n^2 - 2}{3} = 3k^2 + 2k - \frac{1}{3}
\]
which is not an integer. So 3 does not divide \(n^2 - 2 \).

Suppose \(r = 2 \). Then \(n = 3k + 2 \), so \(n^2 - 2 = 9k^2 + 12k + 2 \) and
\[
\frac{n^2 - 2}{3} = 3k^2 + 4k + \frac{2}{3}
\]
which is not an integer. So 3 does not divide \(n^2 - 2 \).

Thus, 3 does not divide \(n^2 - 2 \) for any integer \(n \). \(\square \)

4. Let \(n \) be an integer. Prove that \(20 \mid n \) iff \(4 \mid n \) and \(5 \mid n \).

Proof. Let \(n \) be an integer.

Suppose \(20 \mid n \). Then \(n = 20k \) for some integer \(k \). Hence \(n = 4(5k) \) and \(n = 5(4k) \) so \(4 \mid n \) and \(5 \mid n \).

Suppose \(4 \mid n \) and \(5 \mid n \). Then \(n = 4k \) and \(n = 5m \) for integers \(k \) and \(m \). Hence,
\[
n = 5n - 4n = 20k - 20m = 20(k - m)
\]

and, since \(k - m \) is an integer, \(20 \mid n \).

Thus, \(20 \mid n \) iff \(4 \mid n \) and \(5 \mid n \). \(\square \)

5. Prove that for all \(x \in \mathbb{R} \), there exists a \(y \in \mathbb{R} \) such that \(y \neq x \) and \(y^2 - x = x^2 - y \).

Proof. Let \(x \in \mathbb{R} \). Let \(y = -1 - x \). Then
\[
y^2 - x = (-1 - x)^2 - x = 1 + 2x + x^2 - x = 1 + x + x^2
\]
and
\[
x^2 - y = x^2 - (1 - x) = x^2 + x + 1
\]
so \(y^2 - x = x^2 - y \). \(\square \)