1. Let A and B be disjoint sets. Suppose there is a bijection from A to I_n and there is a bijection from B to I_m. Prove that there exists a bijection from $A \cup B$ to I_{m+n}.

Proof: Let A and B be disjoint sets. Suppose there is a bijection from A to I_n and there is a bijection from B to I_m. Say $f : A \rightarrow I_n$ and $g : B \rightarrow I_m$ are bijections.

Define $h : A \cup B \rightarrow I_{m+n}$ by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) + n & \text{if } x \in B. \end{cases}$$

Suppose $h(x_1) = h(x_2)$ for some x_1 and $x_2 \in A \cup B$.

Suppose x_1 and x_2 are not both in A. Without loss of generality, suppose $x_1 \in A$ and $x_2 \in B$. Then $h(x_1) \leq n$ and $h(x_2) \geq n + 1$, so $h(x_1) \neq h(x_2)$. This is a contradiction, so either x_1 and x_2 are both in A, or they are both in B.

Suppose $x_1, x_2 \in A$. Then $f(x_1) = f(x_2)$, so $x_1 = x_2$.

Suppose $x_1, x_2 \in B$. Then $g(x_1) + n = g(x_2) + n$, so $g(x_1) = g(x_2)$, and hence $x_1 = x_2$.

Thus, $x_1 = x_2$, so h is one-to-one.

Suppose $y \in I_{m+n}$.

Suppose $1 \leq y \leq n$. Then $y \in I_n$, and since f is bijective, there is a $\hat{x} \in A$ such that $f(\hat{x}) = y$ and $h(\hat{x}) = y$.

Suppose $y > n$. Then $y - n \in I_m$, and since g is bijective, there is a $\hat{x} \in B$ such that $g(\hat{x}) = y - n$ and $h(\hat{x}) = y$.

Thus, there is a $\hat{x} \in A \cup B$ such that $h(\hat{x}) = y$ and so h is surjective.

Therefore, h is a bijection. ■

2. Use induction to prove that, for all integers $n \geq 0$,

$$8|5^n + 12n - 1.$$

Proof: Let $P(n) = "8|5^n + 12n - 1"$.

If $n = 0$, then $5^0 + 12 \cdot 0 - 1 = 0$ and $8|0$, so $P(0)$ is true.

Suppose $P(k)$ is true for some $k \geq 0$.

Then $8|5^k + 12k - 1$, so there is an $m \in \mathbb{Z}$ with $5^k + 12k - 1 = 8m$.

Let $n = k + 1$.

Then $5^n + 12n - 1 = 5^{k+1} + 12(k+1) - 1 = 5 \cdot 5^k + 12k + 11$.

Since $5^k + 12k - 1 = 8m$, then

$$5 \cdot (5^k + 12k - 1) + 11 = 5 \cdot 8m + 11 = 40m + 11.$$

Since $40m + 11$ is divisible by 8, then $5^n + 12n - 1$ is divisible by 8.

Therefore, $P(n)$ is true for all $n \geq 0$.

\blacksquare
3. (a) Let \(A \) be the set of all real functions \(f : \mathbb{R} \to \mathbb{R} \). Define a relation \(R \) on \(A \) by:

\[
(f, g) \in R \iff \text{there exists a real constant } k \text{ such that } f(x) = g(x) + k \text{ for all } x \in \mathbb{R}.
\]

Prove that \(R \) is an equivalence relation.

Proof: Let \(f : \mathbb{R} \to \mathbb{R} \). Since \(f(x) = f(x) + 0 \) for all \(x \in \mathbb{R} \), \((f, f) \in R \).

Hence, \(R \) is reflexive.

Suppose \((f, g) \in R \).

Then there exists \(k \in \mathbb{R} \) with \(f(x) = g(x) + k \) for all \(x \in \mathbb{R} \).

Then \(g(x) = f(x) + (-k) \) for all \(x \in \mathbb{R} \). Since \(-k \in \mathbb{R} \), we conclude that \((g, f) \in R \).

Hence, \(R \) is symmetric.

Suppose \((f, g) \in R \) and \((g, h) \in R \).

Then there exist \(k_1, k_2 \in \mathbb{R} \) such that \(f(x) = g(x) + k_1 \) and \(g(x) = f(x) + k_2 \) for all \(x \in \mathbb{R} \).

Then \(f(x) = h(x) + k_1 + k_2 \) for all \(x \in \mathbb{R} \) and \(k_1 + k_2 \in \mathbb{R} \) so \((f, h) \in R \).

Hence, \(R \) is transitive, and so \(R \) is an equivalence relation. \(\blacksquare \)

(b) Define a relation \(R \) on \(\mathbb{R} \) by:

\[
(x, y) \in R \iff |x - y| < 1
\]

Prove that \(R \) is not an equivalence relation.

Proof:

\((2, 2.5) \in R \) since \(|2 - 2.5| = 0.5 < 1 \).

\((2.5, 3) \in R \) since \(|2.5 - 3| = 0.5 < 1 \).

However, \((2, 3) \notin R \) since \(|2 - 3| = 1 \notin 1 \).

So \(R \) is not transitive, and hence \(R \) is not an equivalence relation. \(\blacksquare \)

4. Let \(A \) and \(B \) be sets. Prove that \(\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B) \).

Proof: Suppose \(x \in \mathcal{P}(A \cap B) \). Then \(x \subseteq A \cap B \).

Suppose \(z \in x \). Then \(z \in A \cap B \), so \(z \in A \) and \(z \in B \).

Hence, \(x \subseteq A \) and \(x \subseteq B \), i.e., \(x \in \mathcal{P}(A) \cap \mathcal{P}(B) \).

Thus, \(\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B) \).

Now, suppose \(x \in \mathcal{P}(A) \cap \mathcal{P}(B) \). Then \(x \in \mathcal{P}(A) \) and \(x \in \mathcal{P}(B) \), i.e., \(x \subseteq A \) and \(x \subseteq B \).
Suppose \(y \in x \). Then \(y \in A \) and \(y \in B \), so \(y \in A \cap B \).

Hence, \(x \subseteq A \cap B \), i.e., \(x \in \mathcal{P}(A \cap B) \).

Thus \(\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B) \).

Therefore, \(\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B) \). ■

5. (a) Let \(m \in \mathbb{Z} \) and suppose \(m > 1 \). Suppose \(a, b, c \in \mathbb{Z} \).

Prove that if \(a \equiv b \pmod{m} \), then \(ac \equiv bc \pmod{m} \).

Proof: Suppose \(a, b, c \in \mathbb{Z} \). Suppose \(a \equiv b \pmod{m} \).

Then there exists a \(k \in \mathbb{Z} \) such that \(a - b = mk \).

Then \(ac - bc = mkc \) and hence \(m|ac - bc \), i.e., \(ac \equiv bc \pmod{m} \). ■.

(b) Prove that if \(n \) is an integer then \(n^2 \equiv 0, 1, \text{ or } 4 \pmod{8} \).

Proof:

Let \(n \) be an integer. Then \(n \equiv 0, 1, 2, 3, 4, 5, 6, \text{ or } 7 \pmod{8} \). And so

<table>
<thead>
<tr>
<th>(n \mod 8)</th>
<th>(n^2 \mod 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus, this direct calculation shows that \(n^2 \equiv 0, 1, \text{ or } 4 \pmod{8} \). ■

6. Let \(A, B \) and \(C \) be sets. Let \(f : A \to B \), and \(g : B \to C \).

(a) Suppose \(g \circ f : A \to C \) is one-to-one. Is \(f \) necessarily one-to-one? Prove your answer.

\(f \) is necessarily one-to-one.

Proof: Suppose \(f \) is not one-to-one.

Then there exist \(a_1, a_2 \in A \), \(a_1 \neq a_2 \), with \(f(a_1) = f(a_2) \).

Then \(g(f(a_1)) = g(f(a_2)) \). But \(a_1 \neq a_2 \), so \(g \circ f \) is not one-to-one. This is a contradiction.

Hence \(f \) is one-to-one. ■

(b) Suppose \(g \circ f : A \to C \) is one-to-one. Is \(g \) necessarily one-to-one? Prove your answer.

\(g \) is not necessarily one-to-one.

Proof: We may defined \(A = \{a\} \), \(B = \{b_1, b_2\} \), and \(C = \{c\} \). Then define \(f = \{(a, b_2)\} \), \(g = \{(b_1, c), (b_2, c)\} \).

Then \(g \circ f = \{(a, c)\} \), and \(g \circ f \) is one-to-one though \(g \) is not.

Alternatively, define \(A = \mathbb{Z}_{>0} \), \(B = \mathbb{Z} \), and \(C = \mathbb{Z} \).

Let \(f(x) = x \) and \(g(x) = |x| \). Then \((g \circ f)(x) = |x| \) is one-to-one from \(\mathbb{Z}_{>0} \) to \(\mathbb{Z} \), but \(g \) is not one-to-one from \(\mathbb{Z} \) to \(\mathbb{Z} \). ■