1. Assign “true” or “false” to each of the following statements. No justification need be given.

 (a) T
 (b) F
 (c) F
 (d) T
 (e) T
 (f) F
 (g) T
 (h) F

2. Suppose \(f : A \to B \) and \(f \) is one-to-one. Prove that there is some set \(B' \subseteq B \) such that \(f^{-1} : B' \to A \).

 Let \(B' = \{ b \in B : \exists a \in A \text{ such that } f(a) = b \} \). Consider \(g : A \to B' \) defined by \(g(a) = f(a) \) for \(a \in A \).

 Let \(b \in B' \). Then \(\exists a \in A \) with \(g(a) = b \). So \(g \) is onto.

 Suppose \(a_1, a_2 \in A \) and \(g(a_1) = g(a_2) \). Then \(f(a_1) = f(a_2) \), so \(a_1 = a_2 \) since \(f \) is one-to-one. Hence \(g \) is one-to-one.

 Thus \(g \) is a bijection, so \(g^{-1} : B' \to A \).

 But, \(g^{-1} = f^{-1} \), so \(f^{-1} : B' \to A \).

3. Let \(A = \mathcal{P}(\mathbb{R}) \). Define \(f : \mathbb{R} \to A \) by the formula

 \[f(x) = \{ y \in \mathbb{R} : y^2 < x \} \]

 (a) Is \(f \) one-to-one? Prove your answer.

 Since \(f(0) = \emptyset \), and \(f(-1) = \emptyset \), and \(0 \neq -1 \), \(f \) is not one-to-one.

 (b) Is \(f \) onto? Prove your answer.

 No.

 Suppose \(a > 0 \). Then \(f(a) = (-\sqrt{a}, \sqrt{a}) \). So, \(0 \in f(a) \).

 Now, suppose \(a < 0 \). Then \(f(a) = \emptyset \).

 Hence, \(f(a) \) is either the empty set, or \(f(a) \) contains zero.

 Consider \(T = (1, 2) \in A \). We know that \(T \not\in \emptyset \) and \(0 \not\in T \). Hence, \(T \neq f(a) \) for any \(a \in \mathbb{R} \).

 Thus, \(f \) is not onto.

4. Let \(S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x - y \in \mathbb{Z} \} \).

 Is \(S \) an equivalence relation? Prove your answer.

 Yes.
Reflexive:
For all $x \in \mathbb{R}$, $x - x = 0 \in \mathbb{Z}$. So, $(x, x) \in R$ for all $x \in \mathbb{R}$. Hence, R is reflexive.

Symmetric:
Suppose $x, y \in \mathbb{R}$ and $x - y = m \in \mathbb{Z}$.
Then $y - x = -m \in \mathbb{Z}$.
So, $(x, y) \in R$ implies $(y, x) \in R$. Thus, R is symmetric.

Transitive:
Suppose $(x, y) \in R$ and $(y, z) \in R$.
Let $x - y = a$ and $y - z = b$. Then $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$.
Then $x - z = a + b \in \mathbb{Z}$ since \mathbb{Z} is closed under addition.
Hence $(x, z) \in R$, and so R is transitive.
Thus R is an equivalence relation.

5. Use induction to prove that 49 divides $36^n + 14n - 1$ for all $n \in \mathbb{Z}_{\geq 0}$.

If $n = 0$, then $36^n + 14n - 1 = 1 + 0 - 1 = 0$, so $49|36^n + 14n - 1$.

Suppose $49|36^k + 14k - 1$ for some $k \in \mathbb{Z}_{\geq 0}$. Say $36^k + 14k - 1 = 49m$ for some $m \in \mathbb{Z}$.
Then

$$36^{k+1} + 14(k + 1) - 1 =$$
$$36(36^k + 14k - 1) - 36(14k) + 36 + 14(k + 1) - 1 =$$
$$36(49m) - 36(14k) + 14k + 36 + 14 - 1 =$$
$$36(49m) - 35(14k) + 49 =$$
$$36(49m) - 49(10k) + 49 =$$
$$49(36m - 10k + 1).$$

Hence, $49|36^{k+1} + 14(k + 1) - 1$.
Thus, $49|36^n + 14(n) - 1$ for all $n \in \mathbb{Z}_{\geq 0}$.

6. Suppose R is an equivalence relation on a set A.

Prove that for every $x \in A$ and $y \in A$, $y \in [x]_R$ iff $[y]_R = [x]_R$.

(\leftarrow)
Suppose $[y]_R = [x]_R$. Since $y \in [y]_R$, $y \in [x]_R$.

(\rightarrow)
Suppose $y \in [x]_R$. Then $(x, y) \in R$. Let $a \in [y]_R$. Then $(a, y) \in R$.
But $(x, y) \in R$, so $(y, x) \in R$, so by transitivity of R, $(a, x) \in R$. Hence, $a \in [x]$. Thus, $[y]_R \subseteq [x]_R$.
Let $b \in [x]_R$. Then $(x, b) \in R$. But, $(y, x) \in R$. By transitivity, $(y, b) \in R$, so $b \in [y]_R$.
So, $[x]_R \subseteq [y]_R$.
Thus, $[x]_R = [y]_R$.