Example of a volume question involving a quadric surface

Suppose we are interested in finding the volume bounded by the hyperboloid $-x^{2}-y^{2}+z^{2}=25$ and the plane $z=10$.

By writing the hyperboloid equation as

$$
z^{2}=25+x^{2}+y^{2}
$$

we can more easily see that it is a hyperboloid of two sheets, one sheet above the $x y$-plane and one below it. Above the $x y$-plane, we see the z value starts at a minimum of 5 above the origin and increases as the point (x, y) moves away from the origin.

By setting $z=10$ in the above equation, we can find the intersection of the surface and the plane $z=10$:

$$
\begin{aligned}
10^{2} & =25+x^{2}+y^{2} \\
75 & =x^{2}+y^{2}
\end{aligned}
$$

So we see that the intersection is a circle that lies above (at $z=10$) the circle in the $x y$-plane with radius $\sqrt{75}$ centered at the origin.

As a result, we can discern that the 3D region of space we are find the volume of is located below the plane $z=10$ and above the surface $z^{2}=25+x^{2}+y^{2}$.

All of the points in this 3D region lie above the disk

$$
x^{2}+y^{2} \leq 75 .
$$

The volume we seek is therefore the integral of $10-\sqrt{25+x^{2}+y^{2}}$ over this disk.
Since the disk is easily described using polar coordinates, and the integerand involves $x^{2}+y^{2}=r^{2}$, we try using polar coordinates to evaluate the integral.

We have

$$
\begin{aligned}
\text { volume } & =\int_{0}^{2 \pi} \int_{0}^{\sqrt{75}}\left(10-\sqrt{25+r^{2}}\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{75}}\left(10 r-r\left(25+r^{2}\right)^{1 / 2}\right) d r d \theta \\
& =\int_{0}^{2 \pi} 5 r^{2}-\left.\frac{1}{3}\left(25+r^{2}\right)^{3 / 2}\right|_{0} ^{\sqrt{75}} d \theta \\
& =\int_{0}^{2 \pi} \frac{250}{3} d \theta \\
& =\frac{500}{3} \pi
\end{aligned}
$$

