Math 126 C - Spring 2007
Mid-Term Exam Number Two
May 10, 2007

Name: ________________________________ Section: ____________

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
</tbody>
</table>

- Complete all questions.
- You may use a scientific, non-graphing calculator during this examination. Other electronic devices are not allowed, and should be turned off for the duration of the exam.
- If you use a trial-and-error or guess-and-check method, or read a numerical solution from a graph on your calculator, when an algebraic method is available, you will not receive full credit.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 50 minutes to complete the exam.
1. Consider the curve defined by the vector equation

\[\mathbf{r}(t) = \langle 4t, 5t^3, 2t^2 \rangle \]

(a) Find the unit tangent vector \(\mathbf{T}(t) \) at the point where \(t = 1 \).

(b) Find the parametric equations of the tangent line the curve at the point where \(t = 1 \).
2. Does the curve defined by the polar equation

\[r = \sec \theta + \tan \theta \]

intersect the vertical line \(x = 2 \)? Explain.
3. Suppose a particle is moving in 3-dimensional space so that its position vector is
\[\mathbf{r}(t) = \langle t, t^2, \frac{1}{t} \rangle. \]

(a) Find the tangential component of the particle’s acceleration vector at time \(t = 1 \).

(b) Find all values of \(t \) at which the particle’s velocity vector is orthogonal to the particle’s acceleration vector.
4. Consider the curve in the \(xy \)-plane defined by the position vector function

\[
\vec{r}(t) = (t^2 - 3t, t^2 + 2t)
\]

Find the \(t \)-value of the point of maximum curvature on this curve.
5. Let \(f(x, y) = xe^y - \ln(x + y) \).

(a) Sketch the domain of \(f \).

(b) Find \(f_{xy}(x, y) \).