Math 126G - Spring 2002
First Mid-Term Exam Solutions
April 23, 2002

1. Indicate whether each of the following statements is true or false by circling T or F.

o
T If Z an converges, then nh_}rgo an = 0.
n=1
o
F If lim a, =0, then Z a, must converge.
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T If Z an converges, then Z a, must converge.
n=1 n=100
o o [o.¢]
F If Z a, and Z b, diverge, then Z(an + by,) must diverge.
n=1 n=1 n=1

o
F If lim a, = L, then > a,=L.
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2. Determine whether each sequence converges or diverges. If it converges, find the limit.
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So, the sequence converges.
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=24 0 = 2, so the sequence converges.
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3. Determine whether the series Z(—l)”4—n converges or diverges. If it converges, find its sum.
n=2

This is a geometric series with first term 3/16 and common ratio —1/4. Since | — 1/4| =1/4 < 1,
the series converges, and the sum is
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5. That is, find a
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4. By comparing it with an integral, give an upper bound for the series Z —
“— n(lnn)
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Since n strictly increases with n, and Inn strictly increases with n, n(lnn)? strictly increases with

n. Hence, ——— strictly decreases with n. Also, ———5 > 0 for n > 1. As a result, we have the
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provided the limit converges. We find

/00 dx . /t dz I t du
— — |llm — = 11In ar-y
9 x(lnz)? t-ooJy z(Inz)?  t—o0 Jing u?

1 . ( 1 N 1 ) 0+ 1 1
=lm |(—4+—| = — =
Ing t—o t In2 In2 In2

So A= -1

s is an upper bound for the series.

5. Determine whether each of the following series converge or diverge. Explain your answer and show
all work.
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This series diverges. You should show this using the limit comparison test with the harmonic
series. The integral test would be another more complicated option.
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This series converges. You should show this using the ratio test:
on+1 (n!)Z
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6. Consider the power series

Z(_Q)nn—i— 1

n=0

(a) Find all values of x for which the series converges.
Using the ratio test, we have
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so the series converges absolutely if |2z| < 1 and diverges if |2z| > 1. If [22| = 1, then 2 = 1/2
or x = —1/2. For x = 1/2, we have
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which you can show is convergent by the alternating series test. If x = —1/2, we have
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which is the harmonic series and is therefore divergent. Thus this power series converges for
-1 1

(b) What is the radius of convergence of this series?
Since the interval of convergence has length 1, the radius of convergence is 1/2.

7. Determine a power series for the function f(z) = T oa"
—2x

We know
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