
Mass, Centers of Mass, and Double Integrals

Suppose a 2-D region R has density ρ(x, y) at each point (x, y). We can partition R into subrectangles,
with m of them in the x-direction, and n in the y-direction. Suppose each subrectangle has width ∆x
and height ∆y. Then a subrectangle containing the point (x̂, ŷ) has approximate mass

ρ(x̂, ŷ)∆x∆y

and the mass of R is approximately
m

∑

i=1

n
∑

j=1

ρ(xi, yi)∆x∆y

where (xi, yi) is a point in the i, j-th subrectangle. Letting m and n go to infinity, we have

M = mass of R =

∫∫

R

ρ(x, y) dA.

Similary, the moment with respect to the x axis can be calculated as

Mx =

∫∫

R

yρ(x, y) dA

and the moment with respect to the y axis can be calculated as

My =

∫∫

R

xρ(x, y) dA.

The we may calculate the center of mass of R via

center of mass of R = (x̄, ȳ) =

(

My

M
,
Mx

M

)

.

Example 1

Let R be the unit square, R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Suppose the density of R is given by the
function

ρ(x, y) =
1

y + 1

so that R is denser near the x-axis. As a result, we would expect the center of mass to be below the
geometric center, (1/2, 1/2). However, since the density does not depend on x, we do expect x̄ = 1/2.



We have:

M =

∫∫

R

1

y + 1
dA =

∫

1

0

∫

1

0

1

y + 1
dy dx =

∫

1

0

ln(y + 1) |1
0

dx =

∫

1

0

ln 2 dx = ln 2 = 0.693147....

Mx =

∫∫

R

y

y + 1
dA =

∫

1

0

∫

1

0

(

1 − 1

y + 1

)

dy dx =

∫

1

0

(y − ln(y + 1)) |1
0

dx

=

∫

1

0

(1 − ln 2) dx = 1 − ln 2 = 0.306852819....

My =

∫∫

R

x

y + 1
dA =

∫

1

0

∫

1

0

x

y + 1
dy dx =

∫

1

0

x ln 2 dx =
1

2
x2 ln 2 |1

0
=

1

2
ln 2 = 0.346573590....

Thus the center of mass is

(x̄, ȳ) =

(

My

M
,
Mx

M

)

=

(

1

2
ln 2

ln 2
,
1 − ln 2

ln 2

)

=

(

1

2
, 0.442095...

)

.

Example 2 (Polar)

Let 0 ≤ z ≤ 1. Let R be the polar region

R = {(r, θ) : z ≤ r ≤ 1, 0 ≤ θ ≤ π

2
}.

Suppose R has constant density ρ. Then:

M =

∫∫

R

ρ dA = ρ

∫∫

R

dA = ρ · area of R = ρ

(

π

4
− πz2

4

)

=
π

4
ρ

(

1 − z2
)

.

Mx =

∫∫

R

ρy dA = ρ

∫

1

z

∫ π/4

0

r2 sin θ dθ dr = ρ

∫

1

z

−r2 cos θ |π/2

0
dr = ρ

∫

1

z

r2 dr =
1

3
ρ(1 − z3).

My =

∫∫

R

ρx dA = ρ

∫

1

z

∫ π/2

0

r2 cos θ dθ dr = ρ

∫

1

z

r2 sin θ |π/2

0
dr = ρ

∫

1

z

r2 dr =
1

3
ρ(1 − z3).

Thus, the center of mass is

(x̄, ȳ) =

(

1

3
(1 − z3)

π
4
(1 − z2)

,
1

3
(1 − z3)

π
4
(1 − z2)

)

.



An interesting feature of this region is that if z is sufficiently large, the center of mass will be outside
the region. This happens when the distance from the center of mass to (0, 0) is less than z. That is,
when

√
2

1

3
(1 − z3)

π
4
(1 − z2)

< z.

By factoring, we see that this is equivalent to

√

2

3
(1 + z + z2)
π
4
(1 + z)

< z.

The critical z value is the positive solution to

0 = z2 + z −
√

2

3

π
4
−

√

2

3

which is about 0.82337397.... Thus, if z > 0.82337397..., the region is very thin, and the center of mass
lies outside of the region.


