Linear Approximation and Newton’s Method Worksheet

A very famous and powerful application of the tangent line approximation idea is Newton’s Method for finding approximations of roots of equations. Say we want to find a solution to an equation

\[f(x) = 0. \]

So, we want a value, \(r \), such that \(f(r) = 0 \). If the function \(f \) is not of a rather particular type, such as linear or quadratic, we generally would have a hard time finding \(r \). In such cases, we often resort to finding an approximation of \(r \) using Newton’s Method, which is based on the following idea.

If we are looking for a root \(r \), we might start with a value \(x = a \) as an estimate of \(r \). We then improve the estimate by using the linear approximation of \(f(x) \) at \(a \), and finding the root of the linear approximation. This gives us a new approximation \(b \), which, in many cases will be a better estimate than \(a \).

The linear approximation of \(f(x) \) at \(x = a \) is

\[L(x) = f(a) + f'(a)(x - a), \]

and if we set this equal to zero and solve for \(x \) we find

\[b = a - \frac{f(a)}{f'(a)}. \]

The real power of the method, though, comes from the idea that if \(b \) is a better estimate for \(r \), we can repeat the method starting at \(b \), and get a new, even better estimate, and we can keep repeating this process as long as we want.

Here’s the formulation of the method.

1. Start with an estimate (i.e., a guess) of \(r \). Let’s call that guess \(r_1 \).

2. Create the recursive formula:

\[r_{n+1} = r_n - \frac{f(r_n)}{f'(r_n)}. \]

3. Use the formula repeatedly, to generate \(r_2, r_3, r_4, \ldots \), until the values you get don’t change much (or you come to the conclusion that this method is not working).
For instance, suppose we want a root of the equation \(x^2 - 2 = 0 \). We could solve this algebraically, but for the sake of example, let’s see what Newton’s Method does with it.

Say we start with the guess \(r_1 = 1.5 \). Our recursive formula is

\[
 r_{n+1} = r_n - \frac{r_n^2 - 2}{2r_n}
\]

Plugging in \(r_1 = 1.5 \) gives us

\[
 r_2 = 1.5 - \frac{1.5^2 - 2}{2(1.5)} = 1.41666666666666666666666666666666.
\]

Plugging that into the formula, and repeating, gives us the sequence

\[
 r_3 = 1.414215686274509803921568627
\]
\[
 r_4 = 1.414213562374689910626295578
\]
\[
 r_5 = 1.414213562373095048801689623
\]
\[
 r_6 = 1.414213562373095048801688724
\]
\[
 r_7 = 1.414213562373095048801688724
\]

Since \(r_6 \) and \(r_7 \) are equal, every additional application of the formula will give the same result, so this is our best approximation of the root of the equation \(x^2 - 2 = 0 \) that we can get with this method. (This all depends as well on the accuracy of our calculating device: if your calculator presents fewer digits, you might have seen no change earlier in the sequence).

Examples

1. Use Newton’s method to find a solution to \(x^2 - 17 = 0 \).

2. (a) Show that when applying Newton’s method to equations of the form \(x^2 - B = 0 \), the result can be simplified to

\[
 r_{n+1} = \frac{1}{2} \left(r_n + \frac{B}{r_n} \right)
\]

(b) Use the simplified formula to find the square root of 23.

(c) What effect does using different starting guesses have?

3. Find the solution to \(\cos x = x \) (make a sketch to help you make a first guess).

4. Use Newton’s method to find \(\ln 2 \) (hint: start by finding an equation whose solution is \(\ln 2 \)). What’s a reasonable initial guess? What happens if you start with an initial guess of \(-4\)? What’s going on?

5. The equation \(x^2 = 2^x \) has two integer solutions: \(x = 2 \) and \(x = 4 \). Use Newton’s method to approximate the other solution.