WXML Spring 2016
Number Theory and Noise
Quadratic residues
All files in this section created by Christine Wolf
Let m be a positive integer. Define a set of positive integers A
by saying that n is in A iff n is
a quadratic residue modulo m.
The following are the sound files resulting different moduli m.
Powers of 2
- Quadratic residues, modulo 8 (10 sec)
- Quadratic residues, modulo 16 (10 sec)
- Quadratic residues, modulo 32 (10 sec)
- Quadratic residues, modulo 64 (10 sec)
- Quadratic residues, modulo 128 (10 sec)
- Quadratic residues, modulo 256 (10 sec)
- Quadratic residues, modulo 512 (10 sec)
- Quadratic residues, modulo 1024 (10 sec)
- Quadratic residues, modulo 2048 (10 sec)
- Quadratic residues, modulo 4096 (10 sec)
- Quadratic residues, modulo 8192 (10 sec)
- Quadratic residues, modulo 16384 (10 sec)
- Quadratic residues, modulo 32786 (10 sec)
- Quadratic residues, modulo 65536 (10 sec)
- Quadratic residues, modulo 131072 (10 sec)
Powers of 3
- Quadratic residues, modulo 3 (10 sec)
- Quadratic residues, modulo 9 (10 sec)
- Quadratic residues, modulo 27 (10 sec)
- Quadratic residues, modulo 81 (10 sec)
- Quadratic residues, modulo 243 (10 sec)
- Quadratic residues, modulo 729 (10 sec)
- Quadratic residues, modulo 2187 (10 sec)
- Quadratic residues, modulo 6561 (10 sec)
- Quadratic residues, modulo 19683 (10 sec)
- Quadratic residues, modulo 59049 (10 sec)
Powers of 5
- Quadratic residues, modulo 5 (10 sec)
- Quadratic residues, modulo 25 (10 sec)
- Quadratic residues, modulo 125 (10 sec)
- Quadratic residues, modulo 625 (10 sec)
- Quadratic residues, modulo 3125 (10 sec)
- Quadratic residues, modulo 15625 (10 sec)
- Quadratic residues, modulo 78125 (10 sec)
Powers of 7
Powers of 11
Moduli of the form (11)(7n)
modulo 40000 to 40010
- Quadratic residues modulo 40000 (30 sec.)
- Quadratic residues modulo 40001 (30 sec.)
- Quadratic residues modulo 40002 (30 sec.)
- Quadratic residues modulo 40003 (30 sec.)
- Quadratic residues modulo 40004 (30 sec.)
- Quadratic residues modulo 40005 (30 sec.)
- Quadratic residues modulo 40006 (30 sec.)
- Quadratic residues modulo 40007 (30 sec.)
- Quadratic residues modulo 40008 (30 sec.)
- Quadratic residues modulo 40009 (30 sec.)
- Quadratic residues modulo 40010 (30 sec.)
Longer sounds and simulated sequences
All files in this section created by Xinwei Fan
- Five minutes of prime noise (primes less than 13.3 million) (300 sec.)
- Five minutes of abundant numbers (abundant numbers less than 13.3 million) (300 sec.)
- Simulated abundant numbers: multiples of 6, plus randomly included integers, maintaining
asymptotic density
- Simulated abundant numbers: multiples of 6 and 20, plus randomly included integers, maintaining
asymptotic density
Digit-related sequences
All files in this section created by Elana Lessing
Integers with certain digit sums
- Integers with digit sum divisible by 2 (23 sec)
- Integers with digit sum divisible by 3 (23 sec)
- Integers with digit sum divisible by 4 (23 sec)
- Integers with digit sum divisible by 5 (23 sec)
- Integers with digit sum divisible by 6 (23 sec)
- Integers with digit sum divisible by 7 (23 sec)
- Integers with digit sum divisible by 8 (23 sec)
- Integers with digit sum divisible by 9 (23 sec)
- Integers with digit sum divisible by 10 (23 sec)
Integers with certain digit products
- Integers with digit product (ignoring zeroes) less than 5 (23 sec)
- Integers with digit product (ignoring zeroes) less than 40 (23 sec)
- Integers with digit product (ignoring zeroes) less than 50 (23 sec)
- Integers with digit product (ignoring zeroes) less than 100 (23 sec)
back