1. (a) There is an integer x such that, for every integer y, if $x+y \geq 4$, then $x^{2} y \geq 16$. negation: For all integers x, there exists an integer y such that $x+y \geq 4$ and $x^{2} y<16$.
(b) For every integer y, there exists an integer x such that, for every integer $z, x y=x z$. negation: There exists an integer y such that, for all integers x, there is an integer z such that $x y \neq y z$.
2. Let P be the (FALSE) statement: "Every positive integer is odd." Which of the following are logically equivalent to P ? (Check all that apply.)
\qquad If n is an odd integer, then n is positive.
\qquad If n is a positive integer, then n is odd.
\qquad n is an odd integer only if n is a positive integer.
\qquad n is an odd integer if n is a positive integer.
\qquad There exist integers that are both positive and odd.
X No even integer is positive.
\qquad n is an odd integer if and only if n is a positive integer.
3. Prove that, for all integers a, b, and c, with $c \neq 0, a \mid b$ if and only if $c a \mid c b$.

Proof: Suppose a, b, and c are integers and $c \neq 0$.
\Rightarrow Suppose $a \mid b$.
Then there is an integer k such that $b=a k$.
Then $c b=c(a k)=(c a) k$ and thus $c a \mid c b$.
\Leftarrow Suppose $c a \mid c b$.
Then there is an integer k such that $c b=(c a) k$.
Then $0=c b-c(a k)=c(b-a k)$, which implies that $c=0$ or $b-a k=0$.
Since $c \neq 0$, it must be the case that $b-a k=0$ or $b=a k$.
Thus, $a \mid b$.
Thus, $a \mid b$ if and only if $c a \mid c b$.
4. (a) TRUE There are no integers m and n such that $14 m+21 n=5$.

Proof: Suppose there exist integers m and n such that $14 m+21 n=5$.
Then $5=7(2 m+3 n)$, which implies that $7 \mid 5$.
But this is a contradiction since the only divisors of 7 are 1 and 7 .
Thus, there do not exist integers m and n such that $14 m+21 n=5$.
(b) TRUE There exist integers a, b, and c such that $a \mid b c$ and $a \nmid b$ and $a \nmid c$.

Proof: Let $a=6, b=3$ and $c=4$.
Then $b c=12$.
So, a, b, and c are integers and $a \mid b c$ but $a \nmid b$ and $a \nmid c$.
(c) FALSE For all integers a and $b,|a+b|=|a|+|b|$.

Let $a=5$ and $b=-2$.
Then $|a|=5,|b|=2$, and $a+b=3$.
So $|a+b|=3$ and $|a|+|b|=5+2=7$ and thus $|a+b| \neq|a|+|b|$.
5. (a) Show that $28 \equiv 20,17 \equiv 1$, and $30 \equiv 2$.
$28-20=8=4(2)$. Since $2 \in \mathbb{Z}$, this implies that $28 \equiv 20$.
$17-1=16=4(4)$. Since $4 \in \mathbb{Z}$, this implies that $17 \equiv 1$.
$30-2=28=4(7)$. Since $7 \in \mathbb{Z}$, this implies that $30 \equiv 2$.
(b) Prove that, if $m \equiv 1$ and $n \equiv 1$, then $m n \equiv 1$.

Proof: Suppose that $m \equiv 1$ and $n \equiv 1$.
Then $m-1=4 k$ and $n-1=4 l$ for some $k, l \in \mathbb{Z}$.
This implies that $m=4 k+1$ and $n=4 l+1$.
We then have that $m n=(4 k+1)(4 l+1)=16 k l+4 k+4 l+1=4(4 k l+k+l)+1$.
So, $m n-1=4(4 k l+k+l)$ and $4 k l+k+l \in \mathbb{Z}$.
This means that $m n \equiv 1$.
(c) Prove that, if $m \equiv 2$ and $n \equiv 2$, then $m+n \equiv 0$.

Proof: Suppose that $m \equiv 2$ and $n \equiv 2$.
Then $m-2=4 k$ and $n-2=4 l$ for some $k, l \in \mathbb{Z}$.
This implies that $m=4 k+2$ and $n=4 l+2$.
We then have that $(m+n)-0=m+n=(4 k+2)+(4 l+2)=4 k+4 l+4=4(k+l+1)$.
Since $k+l+1 \in \mathbb{Z}$, this implies that $m+n \equiv 0$.

