- 1. (a) There is an integer x such that, for every integer y, if $x + y \ge 4$, then $x^2y \ge 16$. negation: For all integers x, there exists an integer y such that $x + y \ge 4$ and $x^2y < 16$.
 - (b) For every integer y, there exists an integer x such that, for every integer z, xy = xz. *negation:* There exists an integer y such that, for all integers x, there is an integer z such that $xy \neq yz$.
- 2. Let *P* be the (FALSE) statement: "Every positive integer is odd." Which of the following are logically equivalent to *P*? (Check all that apply.)
- If n is an odd integer, then n is positive.
- \underline{X} If *n* is a positive integer, then *n* is odd.
- $_$ *n* is an odd integer only if *n* is a positive integer.
- X_n is an odd integer if n is a positive integer.
 - _____ There exist integers that are both positive and odd.
- <u>X</u> No even integer is positive.
- $_$ n is an odd integer if and only if n is a positive integer.
- 3. Prove that, for all integers a, b, and c, with $c \neq 0$, $a \mid b$ if and only if $ca \mid cb$. *Proof:* Suppose a, b, and c are integers and $c \neq 0$.
 - \Rightarrow Suppose $a \mid b$.
 - Then there is an integer k such that b = ak.
 - Then cb = c(ak) = (ca)k and thus $ca \mid cb$.
 - \Leftarrow Suppose $ca \mid cb$.
 - Then there is an integer k such that cb = (ca)k.

Then 0 = cb - c(ak) = c(b - ak), which implies that c = 0 or b - ak = 0. Since $c \neq 0$, it must be the case that b - ak = 0 or b = ak.

Thus, $a \mid b$.

Thus, $a \mid b$ if and only if $ca \mid cb$.

- 4. (a) <u>TRUE</u> There are no integers m and n such that 14m + 21n = 5. Proof: Suppose there exist integers m and n such that 14m + 21n = 5. Then 5 = 7(2m + 3n), which implies that 7 | 5. But this is a contradiction since the only divisors of 7 are 1 and 7. Thus, there do not exist integers m and n such that 14m + 21n = 5.
 (b) <u>TRUE</u> There exist integers a, b, and c such that a|bc and a ∤ b and a ∤ c. Proof: Let a = 6, b = 3 and c = 4. Then bc = 12.
 - So, a, b, and c are integers and $a \mid bc$ but $a \nmid b$ and $a \nmid c$.

(c) <u>FALSE</u> For all integers a and b, |a + b| = |a| + |b|. Let a = 5 and b = -2. Then |a| = 5, |b| = 2, and a + b = 3. So |a+b| = 3 and |a| + |b| = 5 + 2 = 7 and thus $|a+b| \neq |a| + |b|$. 5. (a) Show that $28 \equiv 20$, $17 \equiv 1$, and $30 \equiv 2$. 28 - 20 = 8 = 4(2). Since $2 \in \mathbb{Z}$, this implies that $28 \equiv 20$. 17 - 1 = 16 = 4(4). Since $4 \in \mathbb{Z}$, this implies that $17 \equiv 1$. 30-2=28=4(7). Since $7 \in \mathbb{Z}$, this implies that $30 \equiv 2$. (b) Prove that, if $m \equiv 1$ and $n \equiv 1$, then $mn \equiv 1$. *Proof:* Suppose that $m \equiv 1$ and $n \equiv 1$. Then m-1 = 4k and n-1 = 4l for some $k, l \in \mathbb{Z}$. This implies that m = 4k + 1 and n = 4l + 1. We then have that mn = (4k+1)(4l+1) = 16kl + 4k + 4l + 1 = 4(4kl + k + l) + 1. So, mn - 1 = 4(4kl + k + l) and $4kl + k + l \in \mathbb{Z}$. This means that $mn \equiv 1$. (c) Prove that, if $m \equiv 2$ and $n \equiv 2$, then $m + n \equiv 0$. *Proof:* Suppose that $m \equiv 2$ and $n \equiv 2$. Then m-2 = 4k and n-2 = 4l for some $k, l \in \mathbb{Z}$. This implies that m = 4k + 2 and n = 4l + 2. We then have that (m+n) - 0 = m + n = (4k+2) + (4l+2) = 4k + 4l + 4 = 4(k+l+1). Since $k + l + 1 \in \mathbb{Z}$, this implies that $m + n \equiv 0$.