MATH 300 A Winter 2017
Exam I Answers

1. (6 points) Give a meaningful negation of each statement.
(a) There exists an integer m such that, for every integer $n, m \mid n$ or $m>n$.

NEGATION: For all integers m, there exists an integer n such that $m \nmid n$ and $m \leq n$.
(b) For every $p>0$, there exists $d>0$ such that, for every real number x, if $|x-3|<d$, then $\left|x^{2}-9\right|<p$.
NEGATION: There exists a $p>0$ such that, for all $d>0$, there exists a real number x such that $|x-3|<d$ and $\left|x^{2}-9\right| \geq p$.
2. (4 points) Suppose n and m are integers. Prove that, if $n+m>10$, then $n>5$ or $m>5$.

Proof: Suppose n and m are integers and that $n \leq 5$ and $m \leq 5$.
Then, by EPI \#12, $n+m \leq 10$.
So, if $n+m>10$, then $n>5$ or $m>5$.
3. (12 points) Suppose a, b, and c are integers and let R be the statement

$$
R: c \mid a \text { or } c \mid b \text { only if } c \mid a b .
$$

(a) Rewrite R in "if-then" form and give its converse.
R in "if-then" form: If $c \mid a$ or $c \mid b$, then $c \mid a b$.
converse of R : If $c \mid a b$, then $c \mid a$ or $c \mid b$.
(b) Is R true? If so, prove it. If not, give a counter-example that demonstrates that R is false.
Yes!
Proof: Suppose $c \mid a$ and $c \mid b$.
Then there exist integers k and ℓ such that $a=c k$ and $b=c \ell$.
Then $a b=(c k)(c \ell)=c(c k \ell)$.
Thus, $c \mid a b$.
(c) Is the converse of R true? If so, prove it. If not, give a counter-example that demonstrates that the converse of R is false.
No! Let $a=2, b=2$, and $c=4$. Then $c \mid a b$ but $c \nmid a$ and $c \nmid b$.
4. (10 points) Suppose a and b are integers. Prove that $a^{2}+3 b+4$ is even if and only if a and b have the same parity.
Proof: Suppose a and b are integers.
$\Rightarrow)$ Suppose, for the sake of contraposition, that a and b have opposite parity.
Case 1: Suppose a is even and b is odd.
Then $a=2 k$ and $b=2 \ell+1$ for some $k, \ell \in \mathbb{Z}$.
Then $a^{2}+3 b+4=(2 k)^{2}+3(2 \ell+1)+4=4 k^{2}+6 \ell+7=2\left(2 k^{2}+3 \ell+3\right)+1$, which is odd.
Case 2: Suppose a is odd and b is even.
Then $a=2 k+1$ and $b=2 \ell$ for some $k, \ell \in \mathbb{Z}$. Then $a^{2}+3 b+4=(2 k+1)^{2}+3(2 \ell)+4=4 k^{2}+4 k+6 \ell+5=2\left(2 k^{2}+2 k+3+2\right)+1$, which is odd.

Thus, if $a^{2}+3 b+4$ is even, then a and b must have the same parity.
$\Leftarrow)$ Conversely, suppose a and b have the same parity.
Case 1: Suppose a and b are both even.
Then $a=2 k$ and $b=2 \ell$ for some $k, \ell \in \mathbb{Z}$.
Then $a^{2}+3 b+4=(2 k)^{2}+3(2 \ell)+4=4 k^{2}+6 \ell+4=2\left(2 k^{2}+3 \ell+2\right)$, which is even.
Case 2: Suppose a and b are both odd.
Then $a=2 k+1$ and $b=2 \ell+1$ for some $k, \ell \in \mathbb{Z}$.
Then $a^{2}+3 b+4=(2 k+1)^{2}+3(2 \ell+1)+4=4 k^{2}+4 k+6 \ell+8=2\left(2 k^{2}+2 k+3 \ell+4\right)$, which is even.

Thus, if a and b have the same parity, then $a^{2}+3 b+4$ is even.
5. (8 points) Prove that, for all $n \in \mathbb{Z}$, there exists a unique $m \in \mathbb{Z}$ such that $5 n-2 m=3 m+10$.

Proof: Suppose $n \in \mathbb{Z}$.
Let $m=n-2$.
Then $m \in \mathbb{Z}$.
Further, $5 n-2 m=5 n-2(n-2)=3 n+4$ and $3 m+10=3(n-2)+10=3 n-6+10=$ $3 n+4$.
Thus, $5 n-2 m=3 m+10$.
To show that this m is unique, suppose k is an integer with the property that $5 n-2 k=$ $3 k+10$.
Then $5 k+10=5 n$.
Similarly, since $5 n-2 m=3 m+10,5 n=5 m+10$.
This implies that $5 k+10=5 m+10$ which in turn implies that $5 k=5 \mathrm{~m}$.
We then have that $5(k-m)=0$ and, since $5 \neq 0$, this means $k-m=0$ and thus $k=m$.
Therefore, for m is the unique integer such that $5 n-2 m=3 m+10$.

