Polar curve examples

1. $r=\cos (\theta)+\sin (\theta)$

This curve has Cartesian equation

$$
\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{2}
$$

The curve is a circle.

In general, the family

$$
r=A \cos (\theta)+B \sin (\theta)
$$

consists of all circles through the origin.
2. $r=\cos (\theta)+\sec (\theta)$

This curve has Cartesian equation

$$
x^{3}+x y^{2}-2 x^{2}-y^{2}=0
$$

and asymptote $x=1$.

3. $r=\cos (\theta)+\csc (\theta)$

This curve has Cartesian equation

$$
(y-1)\left(x^{2}+y^{2}\right)-x y=0 .
$$

and asymptote $y=1$.

4. $r=\cos (\theta)+\tan (\theta)$

This curve has Cartesian equation

$$
x^{2}\left(x^{2}+y^{2}\right)-\left(x^{2}+y^{2}\right) y^{2}=0
$$

and asymptotes $x= \pm 1$.

5. $r=\cos (\theta)+\cot (\theta)$

This curve has Cartesian equation

$$
\left(\left(x^{2}+y^{2}\right) y-x y\right)^{2}-x^{2}\left(x^{2}+y^{2}\right)=0
$$

and asymptotes $y= \pm 1$.

6. $r=\sin (\theta)+\sec (\theta)$

This curve has Cartesian equation

$$
(x-1)\left(x^{2}+y^{2}\right)-x y=0
$$

and asymptote $x=1$.

7. $r=\sin (\theta)+\tan (\theta)$

This curve has Cartesian equation

$$
\left(x^{2}+y^{2}\right)\left(x^{4}+x^{2} y^{2}-2 x^{2} y\right)-y^{4}=0
$$

and asymptotes $x= \pm 1$.

8. $r=\sin (\theta)+\csc (\theta)$

This curve has Cartesian equation

$$
\left(x^{2}+y^{2}\right)(y-1)-y^{2}=0
$$

and asymptote $y=1$.

9. $r=\sin (\theta)+\cot (\theta)$

This curve has Cartesian equation

$$
\left(\left(x^{2}+y^{2}\right) y-y^{2}\right)^{2}-\left(x^{2}+y^{2}\right) x^{2}=0
$$

and asymptotes $y= \pm 1$.

10. $r=\sec (\theta)+\csc (\theta)$

Thus curve has Cartesian equation

$$
y=\frac{x}{x-1}
$$

and asymptotes $x=1$ and $y=1$.

11. $r=\sec (\theta)+\tan (\theta)$

This curve has Cartesian equation

$$
x^{3}+x y^{2}-2 x^{2}-2 y^{2}+x=0
$$

and asymptote $x=2$.

12. $r=\sec (\theta)+\cot (\theta)$

This curve has Cartesian equation

$$
\left(x^{2}+y^{2}\right) y^{2}(x-1)^{2}-x^{4}=0
$$

and asymptotes $y= \pm 1$.

13. $r=\csc (\theta)+\tan (\theta)$

This curve has Cartesian equation

$$
y^{4}-\left(x^{2}+y^{2}\right) x^{2}(y-1)^{2}=0
$$

and asymptotes $x= \pm 1$ and $y= \pm 1$.

14. $r=\csc (\theta)+\cot (\theta)$

This curve has equation

$$
\left(x^{2}+y^{2}\right)(y-1)^{2}-x^{2}=0
$$

and asymptote $y=2$.

15. $r=\tan (\theta)+\cot (\theta)$

This curve has Cartesian equation

$$
x^{2}\left(y^{2}-1\right)-y^{2}=0
$$

and asymptotes $x= \pm 1$ and $y= \pm 1$.

Exercises:

1. Verify the cartesian equations given in this section.
2. A number of pairs of curves in this section are simple rotations of each other; explain.

Other examples

1. $r=\cos (\theta)+\sin (\theta)+\sec (\theta)+\csc (\theta)+\cot (\theta)+\tan (\theta)$

This curve has Cartesian equation

$$
\left(\left(x^{2}+y^{2}\right)(x y-x-y)-x y(x+y)\right)^{2}-\left(x^{2}+y^{2}\right)^{3}=0
$$

and asymptotes $x=2$ and $y=2$.

2. $r=\ln \theta$

This is a spiral.

Exercises:

(a) Explain why the spiral gets more and more tightly wound as it goes farther from the origin.
(b) Explain the little "tail" that causes all of the self-intersections in the third quadrant.
(c) Find the exact location of the self-intersection nearest the origin.
3. $r=\theta+\frac{1}{\theta}$

