
Curves defined using polar
coordinates
Instead of using Cartesian (x , y ) coordinates, we can
describe points in the plane by specifying how far they are
from some fixed reference point (the pole) and the angle
the line from the point to the pole makes with some
reference direction.

The convention is to treat the origin (0,0) as the pole, and
the reference direction as the positive x-axis. In this way,
we can convert back and forth between polar coordinates
and cartesian.



So a point in the plane may be specified by a pair (r , θ)
like this:
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Here are some points in both xy -coordinates and polar
coordinates:
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To convert back and forth, we can use these relationships:

x = r cos θ, y = r sin θ

and

r =
√

x2 + y2, θ = tan−1 y
x

with the caveat that the theta value yielded might be
negative.



Which brings us the main oddity of polar coordinates:
they are not unique.

If we add 2π (or any multiple of 2 pi) to θ, we are
specifying the same point.

We can even use a negative r if we add an odd multiple π
to θ.

For example,

(r , θ), (−r , θ + π), (−r , θ + 3π), (r , θ + 2π)

all represent the same point.

This makes thing interesting: simple polar equations can
create complex curves.
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We can consider curves using polar equations (i.e.,
equations in r and θ).

We could do this quite generally, but we don’t.

We will just look at curves defined by equations of the
form r = f (θ) where f is some reasonably nice function.

We’ll start at the simplest and work our way up a ways.
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The simplest possibility is to have f be a constant function.

In this case, we get a circle: the equation r = c is the
circle centered at (0,0) with radius c.



The next level of complexity is to have f be a linear
function, so that

r = aθ + b.

The simplest possible form of this is r = θ.

This yields the Archimedean spiral (here with θ > 0):



If we allow any value of θ we get the more mysterious
Archimedean spiral:



It turns out that any equation of the curve r = aθ + b looks
mostly the same as any other.

The a value just effects the “scale”: changing a is
equivalent to zooming in or out.

The b value rotates the spiral around the origin without
changing it in any other way, so you can just tilt your head
to get the same effect.
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Just for an example, here is r = θ + 1:



The reason r = θ looks like a spiral is basically because
f (θ) = θ is monotonic.

Monotonic functions are those that are always increasing
or decreasing.

With this in mind, we can generate other spirals by
choosing f to be various monotonic functions.



Here is r = 1
50 θ

2:



Here is r = 1
10000 θ

3:



In general r = aθk for k > 1 yields a pretty similar-looking
spiral, with increasing space between each turn.

For 0 < k < 1, we get spirals with decreasing space
between each turn:



Here is r 2 = θ; that is, r = ± θ 0.5:



The most important spiral is the equiangular spiral,
whose equation is

r = aebθ.

It is also known as the logarithmic spiral, or spira mirabilis.

One thing that makes this curve different from the
previous ones is that we can let θ run from −∞ to∞: as θ
goes to∞, r goes to∞, while r goes to zero as θ goes to
−∞.

So the spiral spirals in and out forever.



Here is r = 1
10e

θ
10 :

If you zoom in on the origin, it would look pretty much like
this forever.



A different sort of spiral arises with the equation

r =
1
θ

Here it is for θ > 0:



Here it is for∞ < θ <∞:

Yes: it has y = 1 as a horizontal asymptote: as theta goes
to zero, y goes to 1 and x goes to∞.



Here is r = 1 + 1
θ
:



Here is r = ln θ:



Okay, what if f is not monotonic?

The classic example is curves of the form r = sin aθ
where a is a rational number.

When a is an integer, there is a very particular result: we
get a curve called a rose.



If a is odd, we get a petals. Here is r = sin 5θ:



If a is even, we get 2a petals. Here is r = sin 6θ.



Here is r = 1
2 + sin 6θ:



If a is rational, but not an integer, there is some variety.

Here is r = sin 3
7θ:



Here is r = sin 6
7θ:



Here is r = sin 8
3θ:



Here is r = sin 25
4 θ:



A little modification: r = 1
2 + sin2 14

3 θ:


