This is an example of how to write up a homework problem in Math 381. Text in red is commentary, and not part of what you should write.
Suppose the homework problem is the following:

1. Let G be the graph on seven vertices with adjacency matrix A defined by

$$
A_{i j}=1 \text { iff } \cos (i+3 j)>0
$$

Determine whether or not G is connected.
The key things are to make sure that your answer clearly shows what the problem is, and defines all objects needed for the problem.
Your answer could look like this:

1. We want to determine whether or not the graph G is connected, where G has adjacency matrix defined by

$$
A_{i j}=1 \text { iff } \cos (i+3 j)>0,0 \leq i, j \leq 7
$$

Using PARI/GP, we can generate A like this:
It is helpful to set code apart so that it is distinct from the rest of your writing. Here, I used horizontal rules, and the LaTeX package listings to give the code a different look.

A=matrix (7,7);
for $(i=1,7$, for $(j=i+1,7, i f(\cos (i+3 * j)>0, A[i, j]=1 ; A[j, i]=1)))$
The result is the matrix A :

$$
A=\left(\begin{array}{lllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

The $i j$-th entry of A^{k}, where k is a positive integer, indicates the number of walks of length k from vertex i to vertex j.
In particular, the $i j$-th entry of A^{k} will be nonzero if and only if there is a path of length k from vertex i to vertex j.
Looking at various A^{k}, we found that, with $k=3$, we got:
We want to use fact that A^{3} has no zero entries, so we should show A^{3} to convince the reader of this fact.

$$
A^{3}=\left(\begin{array}{ccccccc}
4 & 6 & 4 & 7 & 3 & 5 & 3 \\
6 & 4 & 8 & 10 & 3 & 6 & 3 \\
4 & 8 & 2 & 3 & 7 & 1 & 7 \\
7 & 10 & 3 & 4 & 8 & 2 & 8 \\
3 & 3 & 7 & 8 & 4 & 3 & 5 \\
5 & 6 & 1 & 2 & 3 & 2 & 3 \\
3 & 3 & 7 & 8 & 5 & 3 & 4
\end{array}\right)
$$

Since all entries of A^{3} are non-zero, there exists a walk of length 3 between every pair of vertices.
Be to answer precisely the question that was asked.
Since there is a walk between every pair of vertices, G is connected.

