This is an example of how to write up a homework problem in Math 381. Text in red is commentary, and not part of what you should write.

Suppose the homework problem is the following:

1. Let G be the graph on seven vertices with adjacency matrix A defined by

$$A_{ij} = 1 \text{ iff } \cos(i+3j) > 0.$$

Determine whether or not G is connected.

The key things are to make sure that your answer clearly shows what the problem is, and defines all objects needed for the problem.

Your answer could look like this:

1. We want to determine whether or not the graph G is connected, where G has adjacency matrix defined by

 $A_{ij} = 1$ iff $\cos(i+3j) > 0, 0 \le i, j \le 7$.

Using PARI/GP, we can generate *A* like this:

It is helpful to set code apart so that it is distinct from the rest of your writing. Here, I used horizontal rules, and the LaTeX package *listings* to give the code a different look.

 $\begin{array}{l} A=matrix (7,7); \\ for (i=1,7, for (j=i+1,7, if (cos (i+3*j)>0, A[i,j]=1; A[j,i]=1))) \end{array}$

The result is the matrix *A*:

	(0	1	0	1	0	1	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$
	1	0	1	1	0	1	0
	0	1	0	0	1	0	1
A =	1	1	0	0	1	0	1
	0	0	1	1	0	0	1
	1	1	0	0	0	0	0
	$\setminus 0$	0	1	1	1	0	0/

The *ij*-th entry of A^k , where k is a positive integer, indicates the number of walks of length k from vertex *i* to vertex *j*.

In particular, the *ij*-th entry of A^k will be nonzero if and only if there is a path of length k from vertex i to vertex j.

Looking at various A^k , we found that, with k = 3, we got:

We want to use fact that A^3 has no zero entries, so we should *show* A^3 to convince the reader of this fact.

	4	6	4	7 10 3 4 8 2 8	3	5	3)
	6	4	8	10	3	6	3
	4	8	2	3	7	1	7
$A^3 =$	7	10	3	4	8	2	8
	3	3	7	8	4	3	5
	5	6	1	2	3	2	3
	$\sqrt{3}$	3	7	8	5	3	4/

Since all entries of A^3 are non-zero, there exists a walk of length 3 between every pair of vertices. Be to answer precisely the question that was asked.

Since there is a walk between every pair of vertices, *G* is connected.