Homework 2 - Math 381 A - Winter 2016 - Dr. Matthew Conroy

Note: If you write any code to help you solve any of the homework problems in this course, you must include a printed version of the code (thoroughly commented) with your homework submission. The same is true for all software input and output. Please do not include screenshots or photographs of your computer screen. If necessary, copy and paste input and/or output to a text editor and print from there.

1. Let G be a graph with adjacency matrix

$$
A=\left(\begin{array}{lllllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right)
$$

Use the fact that the $i j$-th entry of A^{k} gives the number of walks (defined in problem 2, below) of length k from vertex i to vertex j in G to argue whether or not G is connected.
2. Let a and b be positive integers. We say that a divides b iff $b=a k$ for some integer k.

So 2 divides 10, and 3 does not divide 8 .
Let $V=\{2,3,4, \ldots, 21\}=\{j \in \mathbb{Z}: 2 \leq j \leq 21\}$.
Define a graph H with V as its vertex set and edge set E defined by $\left(v_{1}, v_{2}\right) \in E$ iff $v_{1} \neq v_{2}$ and v_{1} divides v_{2} or v_{2} divides v_{1}. So $(2,6)$ is an edge in $H ;(3,4)$ is not.
Recall that the edge $(2,6)$ is the same as the edge $(6,2)$.
(a) The degree sequence of a graph G is the sequence of the degrees of all vertices in G. For example, the graph below has degree sequence $5,3,2,2,1,1,1,1,0$ (in decreasing order).

Give the degree set of H in decreasing order.
(b) A path from vertex u to vertex v in a graph G is an alternating sequence of vertices and edges

$$
u=u_{0}, e_{1}, u_{1}, e_{2}, \ldots, u_{n-1}, e_{n}, u_{n}=v
$$

where $e_{i}=\left(u_{i-1}, u_{i}\right)$ and none of the vertices are repeated.
(A walk is the same as a path except that we allow repetition of edges and vertices.) The length of a path is the number of edges in the path.

The distance from vertex u to vertex v in a graph G is the length of the shortest path from u to v.
A graph G is connected if, for all pairs of vertices u and v in G, there is a path from u to v.
Remove the vertices that have degree zero from H (along with their incident edges), to get the subgraph H^{\prime}. Is H^{\prime} connected? Support your claim fully. What two vertices in H^{\prime} are farthest apart? Support your claim fully.

