MATH 300 C, Spring 2016
Midterm I Study Problems Solutions and Hints
1. Prove that, for all = € Z, if 2 — 1 is divisible by 8, then x is odd.

Proof: Suppose z is an even integer.
Then = = 2k for some integer k.
Then 2% — 1 = (2k)* — 1 = 4k* — 1.
Suppose z? — 1 is divisible by 8.
Then there exists an integer m such that 4k* — 1 = 8m.
Then 1 = 8m — 4k? = 4(2m — k?).
Since 2m — k? € Z, 4 divides 1.
However, 4 does not divide 1 since 0 < 1 < 4, so we have a contradiction.
Hence, the assumption that 2? — 1 is divisible by 8 is false.
Thus 2 — 1 is not divisible by 8.
Hence, if 2% — 1 is divisible by 8, then x is odd. B

2. Let a and b be integers. Prove that z = a® + ab + b is odd iff a is odd or b is odd.
Proof: Suppose a and b are integers.

We can consider four cases.

(a) Suppose a is even and b is even.
Then a = 2k and b = 2m for some integers k and m.
Then z = 4k? + 4km + 2m = 2(2k* + 2km + m).
Since 2k* + 2km + m is an integer (by Closure), z is even.
(b) Suppose a is even and b is odd.
Then a = 2k and b = 2m + 1 for some integers k and m.
Then z = 4k* + 2k(2m + 1) +2m + 1 =2(2k* + k(2m + 1) + m) + 1.
Since 2k? + k(2m + 1) + m is an integer (by Closure), z is odd.
(c) Suppose a is odd and b is even.
Then a = 2k + 1 and b = 2m for some integers k and m.
Then

= (2k+1)*+ (2k + 1)(2m) + 2m
= 4k + 4k + 1+ (2k + 1)(2m) + 2m
=2(2k* + 2k + m(2k + 1) +m) + 1.

Since 2k* + 2k + m(2k + 1) + m is an integer (by Closure), z is odd.

(d) Suppose a is odd and b is odd.
Then a = 2k + 1 and b = 2m+! for some integers k and m.
Then

r=02k+ 1%+ 2m+1)2k+1)+b
=4k* + 4k + 1+ 4mk +2m + 2k + 1 +2m + 1
= 2(2k* + 2mk + 3k +2m + 1) + 1.

Since (2k? + 2mk + 3k + 2m + 1) is an integer (by Closure), z is odd.



The first case shows that if « and b are even, then z is even; hence, if = is odd, then « is odd or b is
odd.

The other three cases show that if a or b is odd, then z is odd.
Hence, z is odd if and only if a is odd or bis odd. W

3. Let a and b be integers. Prove that a(b + a + 1) is odd iff a and b are both odd.
Proof: Let a and b be integers.
Suppose a is even.
Then a = 2k for some k € Z.

Then a(b+ a + 1) = 2k(b + a + 1), and since a, b, and k are integers, k(b + a + 1) is an integer (by
Closure).

Hence, 2 | a(b+a+1),ie,a(b+ a+ 1) is even.

Suppose a is odd and b is even.
Then a = 2k + 1 and b = 2m for some integers k and m.
Thena(b+a+1) =a2k+2m+1+1) = a2k +2m + 2) = 2a(k + m + 1).

Since a, k, and m are integers, a(k + m + 1) is an integer (by Closure), and so 2 | a(b+ a + 1), i.e,,
a(b+a+1)is even.

Suppose a is odd and b is odd.
Then a = 2k + 1 and b = 2m + 1 for some integers k£ and m.
Then

alb+a+1)=(2k+1)(2k +2m +3)
= 4k* 4 4mk + 8k + 2m + 3
= 2(2k* + dmk + 4k + m + 1) + 1.

Since k and m are integers, 2k* + 4mk + 4k + m + 1 is an integer (by Closure), and so a(b + a + 1)
is odd.

Thus, a(b + a + 1) is odd iff a and b are both odd.®
4. Prove or give a counterexample for each of the following statements.

(a) For all integers z and y, |zy| = |z|y|.
Proof: Here, I give only the outline of the proof.
Suppose = and y are integers.
By the trichotomy law, we know x > 0 or z < 0,and y > 0 or y < 0.
So, we consider four cases:
i z>0,y>0
ii. x>0,y <0
iii. 2 <0,y >0
iv. £ <0,y <0.



In each case, use the definition of absolute value to simplify |z| and |y|. Also, use elementary
integer properties to conclude whether zy is negative or not, and from that, simplify |zy|.

(b) For all integers a and b, if a|b and b|a, then @ = b or a = —b.
Proof: Let a and b be non-zero integers.
Suppose a|b and bla.
Then there exist integers k and m such that b = ak and a = bm.
Then, by the Substitution of Equals axiom, we have b = bmk. Hence, b — bmk = 0, and so
b(1 —mk) =0.
As b # 0, we may conclude that 1 — mk = 0 (by EPI 6).
That is, mk = 1 (by Substitution of Equals).
Hence, k =1ork = —1(by EPI16),sob=aorb=—a. R
(c) For all integers m and n, if n + m is odd, then n # m.
Proof: Let m and n be integers.
Suppose n = m. Then n + m = 2m which is even.
Hence, n = m implies n + m is even, and so if n + m is odd, then n # m. B

5. Let A, B, and C be sets. Provethat AN B = A\ (A\ B).
Proof: Let A, B, and C be sets.
Suppose r € AN B.
Thenz € Aand x € B.
Hence, z ¢ A\ B.
Since x € A, we concludez € A\ (A\ B).
Thus, 2 € AN Bimpliesz € A\ (A\ B),so ANB C A\ (A\ B).

Now, suppose xz € A\ (A \ B).

Then z € A.

Suppose » € B.

Thenz € A\ B,and hencez ¢ A\ (A\ B).
This is a contradiction, since x € A\ (A \ B).
Thusz € B,andsoz € AN B.

Hence, z € A\ (A\ B) impliesz € AN B.
Therefore A\ (A\ B) C AN B.

Thus, ANBC A\ (A\B)and A\ (A\B)C AnB,andso ANB=A\(A\B). 1

6. Let A, B and C be sets. Prove that (AU B)\ (AUC) =B\ (AUC).
Proof: Let A, B and C be sets.
Suppose x € (AUB) \ (AU Q).
Thenzr € AUBandx ¢ AUC.
Hence, z ¢ A.
Since x € AU B, we conclude that x € B.



Hence, z € B\ (AU C).
Thus, z € (AUB)\ (AUC) impliesz € B\ (AU C),andso (AUB)\ (AUC) C B\ (AUC).

Now, suppose z € B\ (AU C).

Thenz € B,sox € AU B.

Also,z ¢ AUC,andsoz € (AUB)\ (AUC).

Hence, z € B\ (AUC) impliesz € (AUB)\ (AUC),so B\ (AUuC)Cze (AUB)\ (AUC).

Thus, (AUB)\ (AUC)C B\ (AUuC)and B\ (AUC) Cz e (AUB)\ (AUQ).
Hence, (AUB)\ (AuC)=B\(AUC). R

. Let A, B and C be sets. Prove that (A\ B)\ C = A\ (BUC).

Proof: Let A, B and C be sets.

Suppose z € (A\ B) \ C.

Thenz € A, x ¢ Band x € C.

Suppose z € BUC.

Thenz € Borz e C.

This is a contradiction since x ¢ B and x ¢ C.

Thus, z ¢ BUC.

Hence, z € A\ (BUC).

So,z € (A\ B)\ Cimpliesz € A\ (BUC), and hence (A\ B)\C C A\ (BUC().

Now, suppose z € A\ (BUC).

Thenz € Aand z ¢ BUC.

Thenz ¢ Bandxz ¢ C,andsox € A\ B,andz € (A\ B) \ C.

Thus, z € A\ (BUC) impliesz € (A\ B)\ C,andso A\ (BUC) C (A\ B) \ C.

Hence, (A\ B)\CCz e A\(BUC)and A\ (BUC) C (A\ B)\C.
Therefore, (A\ B)\C = A\ (BUC). &

. Let A, B, and C be sets. Prove that AUC C BUC'iff A\ C C B\ C.
Proof: Let A, B, and C be sets.
Suppose AUC C BUC.
Suppose x € A\ C.
Thenz € Aand z ¢ C.
Thenx € AUC,sox € BUC.
Since x ¢ C, we conclude that x € B.
Hence,z € Band z ¢ C,ie.,z € B\ C.
Thus, z € A\ Cimpliesz € B\ C,so0 A\ C C B\ C.
Therefore, AUC C BUC implies A\ C C B\ C.



Now, suppose A\ C C B\ C.
Supposez € AUC.
Thenx € Aorx € C.
Suppose x € C.
Thenz € BUC.
Suppose =z € C.
Thenz € A,andsoz € A\ C,and hence x € B\ C.
Sox € B,and hencex € BUC.
Hence,» € BUC,andsox € AUC impliesx € BUC.
Thatis, AUC C BUC.
Thus, A\ C C B\ Cimplies AUC C BUC.

Thus, AUC C BUCIiffA\CCB\C. 1



