Homework 7 - Math 300 C - Spring 2016 - Dr. Matthew Conroy Relevant reading: Velleman 7.1, 7.2

1. For each of the following pairs of sets, give a bijection from the first set to the second set. Prove that your bijection is a bijection. Then give the inverse of each bijection.
(a) The set of positive integers that are congruent to 3 modulo 7 and the set of positive integers that are congruent to 11 modulo 19
(b) $(-2, \infty)$ and $(-\infty, 7)$ (these are intervals of real numbers)
(c) $(-\infty, 3)$ and $(0,1)$ (these are intervals of real numbers)
2. Prove the following theorems.
(a) Let A and B be finite sets. If $A \cap B=\varnothing$, then $|A \cup B|=|A|+|B|$.
(b) For any finite sets A and $B,|A \backslash B|+|A \cap B|=|A|$.
(c) For any finite sets A and $B,|A \cup B|=|A|+|B|-|A \cap B|$.
3. Let A be a finite set. Prove that if $f: A \rightarrow A$ is injective, then f is bijective.
4. Prove that, if $A \sim B$, then $\mathcal{P}(A) \sim \mathcal{P}(B)$.
5. Let n be a positive integer. Use induction to prove that the union of n pair-wise disjoint countable sets is countable.
