1. Give a useful denial (i.e., negation) of each statement. You may use symbols like \forall and \exists, et cetera.
(a) For every real number x, there exists a real number y such that $x<y$.
(b) There exists a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that, for every real number $x, f(2 x)=4 f(x)$.
(c) If x is a positive real number, then $\ln x \geq 0$ or $\frac{1}{x}>1$.
(d) For all real $x, x \neq 0 \Rightarrow x^{2}>0$.
2. Let P be the statement: "Every prime number is odd." Which of the following are logically equivalent to P ? (Check all that apply.)
\qquad n is odd implies n is prime.
\qquad n is odd if n is prime.
___ If n is odd, then n is prime.
___ If n is prime, then n is odd.
___ There exist numbers that are both prime and odd.
\qquad No even number is prime.
\qquad n is odd if and only if n is prime.
3. Show the following set equalities.
(a) $(A \cup B) \cup(A \cap B)=A \cup B$
(b) $(A \backslash B) \cup(B \backslash A) \cup(A \cap B)=A \cup B$
(c) $(A \backslash B) \cap(A \cap B)=\varnothing$
(d) $(A \cap B) \cap A=(A \cap B)$
4. Show the equivalence of the following statement pairs.
(a) $(P \vee Q) \Rightarrow R$ and $\neg R \Rightarrow(\neg P \wedge \neg Q)$
(b) $(P \Rightarrow Q) \Rightarrow R$ and $(P \wedge \neg Q) \vee R$
(c) $P \Leftrightarrow Q$ and $(\neg P \vee Q) \wedge(\neg Q \vee P)$
5. Use quantifiers to write each of the following statements.
(a) Every integer can be written as the sum of two squares.
(b) There exists a real number r such that $r x=0$ for every real number x .
(c) For every real number x, we can find exactly one real number y such that $x+y=0$.
6. Write the negation of each of the following. Is each statement true or false? For all statements, the universe is \mathbb{Z} (that is, assume all variables represent integers).
(a) $\exists x \exists y((x y=100) \wedge(x+y=30))$
(b) $\forall x \exists!y(x+y=7)$
(c) $\exists a \forall b(a b=b)$
