Here are proofs of two theorems in Homework 4.
I have added comments in brackets.
Theorem Let A and B be sets. Then $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$, with equality if and only if

$$
A \subseteq B \text { or } B \subseteq A
$$

Proof Let A and B be sets.
[We begin by proving that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$ completely generally.]
Suppose $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$.
Then $x \in \mathcal{P}(A)$ or $x \in \mathcal{P}(B)$.
Hence, $x \subseteq A$ or $x \subseteq B$.
[We need to show that $x \in \mathcal{P}(A \cup B)$. That is, we need to show that $x \subseteq A \cup B$.]
Suppose $y \in x$.
Then $y \in A$ or $y \in B($ since $x \subseteq A$ or $x \subseteq B)$.
Hence, $y \in A \cup B$.
Thus, $y \in x$ implies $y \in A \cup B$, and so $x \subseteq A \cup B$.
Hence, $x \in P(A \cup B)$.
Therefore, $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$ implies $x \in P(A \cup B)$, and so

$$
\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)
$$

Now, we wish to show that $\mathcal{P}(A) \cup \mathcal{P}(B)=\mathcal{P}(A \cup B)$ if and only if $A \subseteq B$ or $B \subseteq A$.
Since we just showed $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$, we need to show that

$$
\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)
$$

if and only if $A \subseteq B$ or $B \subseteq A$.
[Since this is an "if and only if" statement, we have two directions to prove.]
We start with "reverse" direction.
Suppose $A \subseteq B$ or $B \subseteq A$.
Without loss of generality, let's assume $A \subseteq B$.
Suppose $x \in \mathcal{P}(A \cup B)$.
Then $x \subseteq A \cup B$.
Suppose $y \in x$.
Then $y \in A$ or $y \in B$.
Since $A \subseteq B, y \in A$ implies $y \in B$.
Hence, $y \in B$.
So, $y \in x$ implies $y \in B$, and hence $x \subseteq B$.
That is, $x \in \mathcal{P}(B)$, and so $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$.
Thus, we have shown that $x \in \mathcal{P}(A \cup B)$ implies $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$, and so

$$
\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)
$$

Now, we prove the "forward" direction by proving the contrapositive
Suppose $A \nsubseteq B$ and $B \nsubseteq A$.
Then there is an $x \in A$ such that $x \notin B$, and there is a $y \in B$ such that $y \notin A$.
Let $S=\{x, y\}$.
Suppose $z \in S$.
Then $z=x$ or $z=y$, so $z \in A$ or $z \in B$; that is, $z \in A \cup B$.
Hence, $S \subseteq A \cup B$; that is, $S \in \mathcal{P}(A \cup B)$.
On the other hand, $S \nsubseteq A$ since $y \in S$ and $y \notin A$.
Also, $S \nsubseteq B$ since $x \in S$ and $x \notin B$.
Hence, $S \notin \mathcal{P}(A)$ and $S \notin \mathcal{P}(B)$, and so $S \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.
Thus $\mathcal{P}(A \cup B) \nsubseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.
Hence, $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$ implies $A \subseteq B$ or $B \subseteq A$.
Thus, $\mathcal{P}(A \cup B)=\mathcal{P}(A) \cup \mathcal{P}(B)$ if and only if $A \subseteq B$ or $B \subseteq A$.

Theorem Suppose \mathcal{R} and \mathcal{S} are families of sets. Then $(\cup \mathcal{R}) \backslash(\cup \mathcal{S}) \subseteq \cup(\mathcal{R} \backslash \mathcal{S})$.
Proof Suppose \mathcal{R} and \mathcal{S} are families of sets.
Suppose $x \in(\cup \mathcal{R}) \backslash(\cup \mathcal{S})$.
Then $x \in \cup \mathcal{R}$ and $x \notin \cup \mathcal{S}$.
Since $x \in \cup \mathcal{R}$, there exists a set $A \in \mathcal{R}$ such that $x \in A$.
[At this point, we need to argue that $x \in \cup(\mathcal{R} \backslash \mathcal{S})$. To do that, we need to find a set in ($\mathcal{R} \backslash \mathcal{S}$) that x is in. A is that set, as we now show.]
Suppose $A \in \mathcal{S}$.
Then $x \in \cup \mathcal{S}$.
This is a contradiction, since we know $x \notin \mathcal{S}$, and so $A \notin \mathcal{S}$.
Thus $A \in \mathcal{R}$ and $A \notin \mathcal{S}$, and so $A \in \mathcal{R} \backslash \mathcal{S}$.
Since $x \in A, x \in \cup(\mathcal{R} \backslash \mathcal{S})$.
Thus $x \in(\cup \mathcal{R}) \backslash(\cup \mathcal{S})$ implies $x \in \cup(\mathcal{R} \backslash \mathcal{S})$.
Hence, $(\cup \mathcal{R}) \backslash(\cup \mathcal{S}) \subseteq \cup(\mathcal{R} \backslash \mathcal{S})$.

