Homework 7 - Math 300 B - Winter 2015 - Dr. Matthew Conroy
Relevant reading: Velleman, 5.1, 5.2, 5.3, 7.1, 7.2

1. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \in \mathbb{Q} \\
-3 x & \text { if } x \notin \mathbb{Q}
\end{array}\right.
$$

Is f one-to-one? Is f onto? Is f^{-1} a function? State and prove a theorem.
(a) Show that f is one-to-one and onto.
(b) Give a formula for $f^{-1}(x)$.
2. Let A, B and C be sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that if f and g are onto, then $g \circ f$ is onto.
(b) Prove that if $g \circ f$ is onto, then g is onto.
(c) If $g \circ f$ is onto, is f necessarily onto? Prove your answer.
3. Let A be the set of subsets of \mathbb{R}. Define a function $f: \mathbb{R} \rightarrow A$ by

$$
f(x)=\{z \in \mathbb{R}:|z|>x\} .
$$

Is f one-to-one? Is f onto?
4. Let A and B be sets, and $f: A \rightarrow B$. Suppose f is one-to-one. Prove that there exists a subset $C \subseteq B$ such that $f^{-1}: C \rightarrow A$.
5. For each of the following pairs of sets, give a bijection from the first set to the second set. Then give the inverse of each bijection.
(a) \mathbb{Z} and $\mathbb{Z} \backslash\{-6,0,5\}$
(b) $(-2, \infty)$ and $(-\infty, 7)$ (these are intervals, i.e., subset of \mathbb{R})
(c) $(-\infty, 3)$ and $(0,1)$ (these are intervals, i.e., subset of \mathbb{R})
6. Let A and B be finite sets. If $A \cap B=\varnothing$, then $|A \cup B|=|A|+|B|$.
7. Let A be a finite set. Prove that if $f: A \rightarrow A$ is injective, then f is bijective.
8. Prove that, if $A \sim B$, then $\mathcal{P}(A) \sim \mathcal{P}(B)$.

