1. Define a function \(f : \mathbb{R} \to \mathbb{R} \) by
\[
f(x) = \begin{cases}
2x & \text{if } x \in \mathbb{Q} \\
-3x & \text{if } x \notin \mathbb{Q}
\end{cases}
\]
Is \(f \) one-to-one? Is \(f \) onto? Is \(f^{-1} \) a function? State and prove a theorem.

(a) Show that \(f \) is one-to-one and onto.
(b) Give a formula for \(f^{-1}(x) \).

2. Let \(A, B \) and \(C \) be sets. Let \(f : A \to B \) and \(g : B \to C \).

(a) Prove that if \(f \) and \(g \) are onto, then \(g \circ f \) is onto.
(b) Prove that if \(g \circ f \) is onto, then \(g \) is onto.
(c) If \(g \circ f \) is onto, is \(f \) necessarily onto? Prove your answer.

3. Let \(A \) be the set of subsets of \(\mathbb{R} \). Define a function \(f : \mathbb{R} \to A \) by
\[
f(x) = \{ z \in \mathbb{R} : |z| > x \}.
\]
Is \(f \) one-to-one? Is \(f \) onto?

4. Let \(A \) and \(B \) be sets, and \(f : A \to B \). Suppose \(f \) is one-to-one. Prove that there exists a subset \(C \subseteq B \) such that \(f^{-1} : C \to A \).

5. For each of the following pairs of sets, give a bijection from the first set to the second set. Then give the inverse of each bijection.

(a) \(\mathbb{Z} \) and \(\mathbb{Z} \setminus \{-6, 0, 5\} \)
(b) \((-2, \infty)\) and \((-\infty, 7)\) (these are intervals, i.e., subset of \(\mathbb{R} \))
(c) \((-\infty, 3)\) and \((0, 1)\) (these are intervals, i.e., subset of \(\mathbb{R} \))

6. Let \(A \) and \(B \) be finite sets. If \(A \cap B = \emptyset \), then \(|A \cup B| = |A| + |B|\).

7. Let \(A \) be a finite set. Prove that if \(f : A \to A \) is injective, then \(f \) is bijective.

8. Prove that, if \(A \sim B \), then \(\mathcal{P}(A) \sim \mathcal{P}(B) \).