Homework 7 - Math 300 B - Winter 2015 - Dr. Matthew Conroy Relevant reading: Velleman, 5.1, 5.2, 5.3, 7.1, 7.2

1. Define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 2x & \text{if } x \in \mathbb{Q} \\ -3x & \text{if } x \notin \mathbb{Q} \end{cases}$$

Is *f* one-to-one? Is *f* onto? Is f^{-1} a function? State and prove a theorem.

- (a) Show that *f* is one-to-one and onto.
- (b) Give a formula for $f^{-1}(x)$.
- 2. Let A, B and C be sets. Let $f : A \to B$ and $g : B \to C$.
 - (a) Prove that if *f* and *g* are onto, then $g \circ f$ is onto.
 - (b) Prove that if $g \circ f$ is onto, then g is onto.
 - (c) If $g \circ f$ is onto, is f necessarily onto? Prove your answer.
- 3. Let *A* be the set of subsets of \mathbb{R} . Define a function $f : \mathbb{R} \to A$ by

$$f(x) = \{ z \in \mathbb{R} : |z| > x \}.$$

Is *f* one-to-one? Is *f* onto?

- 4. Let *A* and *B* be sets, and $f : A \to B$. Suppose *f* is one-to-one. Prove that there exists a subset $C \subseteq B$ such that $f^{-1} : C \to A$.
- 5. For each of the following pairs of sets, give a bijection from the first set to the second set. Then give the inverse of each bijection.
 - (a) \mathbb{Z} and $\mathbb{Z} \setminus \{-6, 0, 5\}$
 - (b) $(-2,\infty)$ and $(-\infty,7)$ (these are intervals, i.e., subset of \mathbb{R})
 - (c) $(-\infty, 3)$ and (0, 1) (these are intervals, i.e., subset of \mathbb{R})
- 6. Let *A* and *B* be finite sets. If $A \cap B = \emptyset$, then $|A \cup B| = |A| + |B|$.
- 7. Let *A* be a finite set. Prove that if $f : A \to A$ is injective, then *f* is bijective.
- 8. Prove that, if $A \sim B$, then $\mathcal{P}(A) \sim \mathcal{P}(B)$.