Math 300 B - Winter 2015 - Homework 6
Problems on functions and induction
Relevant reading: Velleman, 5.1, 6.1

1. Find the smallest integer k such that $n!>3 n^{4}$ for all $n \geq k$. Use induction to prove this result, and be sure to also prove you have the smallest k.
2. Use induction to prove that $5^{n}>10\left(4^{n}+3^{n}\right)$ for all integers $n \geq 11$.
3. Let $a \in \mathbb{R}_{\neq 0}$. Use induction to prove that, for all integers $n \geq 0$,

$$
\sum_{i=0}^{n} a^{i}=\frac{1-a^{n+1}}{1-a}
$$

4. Use induction to prove that

$$
15 \mid 3^{4 n}+2^{12 n+1}-8
$$

for all n in $\mathbb{Z}_{\geq 1}$.
5. Let n be a positive odd integer.

Use induction to prove that the sum of all positive odd integers less than or equal to n is $\left(\frac{n+1}{2}\right)^{2}$.
6. Suppose $f: A \rightarrow C$ and $g: B \rightarrow C$. Prove that if $A \cap B=\varnothing$, then $f \cup g:(A \cup B) \rightarrow C$.
7. Suppose R is a relation on a set A. Is it possible that R is both a function and an equivalence relation? Answer this question by completing and proving the statement " R is a function and an equivalence relation iff ...".
8. Let S and T be sets and $f: S \rightarrow T$. Define a relation R on S by

$$
(a, b) \in R \Leftrightarrow f(a)=f(b) .
$$

Prove that R is an equivalence relation.

