Homework 4 - Math 300 B Winter 2015 - Dr. Matthew Conroy Relevant readings: Velleman, sections 3.3, 3.4, 3.5, and 3.6.

- 1. Let a, b, c and d be integers, with $bd \neq 0$. Then $a\sqrt{b} + c\sqrt{d}$ is an algebraic number.
- 2. Let a and b be integers. Then $a^2b + a + b$ is even if and only if a and b are both even.
- 3. (a) Let n be an integer. Then the remainder when n^2 is divided by 4 is 0 or 1.
 - (b) The numbers in the set $\{99, 999, 9999, ...\}$ cannot be written as the sum of two squared integers, but at least one can be expressed as the sum of three squared integers.
- 4. Let *A* and *B* be sets. Then $A \subseteq B$ iff $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- 5. Let A and B be sets. Then $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$, with equality if and only if $A \subseteq B$ or $B \subseteq A$. (You will need to show two things: (1) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$, and (2) $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$ if and only if $A \subseteq B$ or $B \subseteq A$.)
- 6. Suppose \mathcal{R} and \mathcal{S} are families of sets. If $\mathcal{R} \subseteq \mathcal{S}$, then $\cup \mathcal{R} \subseteq \cup \mathcal{S}$.
- 7. Suppose \mathcal{R} and \mathcal{S} are families of sets, and $\mathcal{R} \neq \emptyset$ and $\mathcal{S} \neq \emptyset$. If $\mathcal{R} \subseteq \mathcal{S}$, then $\cap \mathcal{S} \subseteq \cap \mathcal{R}$.
- 8. Suppose \mathcal{R} and \mathcal{S} are families of sets. Then $(\cup \mathcal{R}) \setminus (\cup \mathcal{S}) \subseteq \cup (\mathcal{R} \setminus \mathcal{S})$.