MATH 300 — Dr. Matthew Conroy Final Exam Practice Problems

NOTE: For this set of problems, we will use the convention that \mathbb{N} is the set of positive integers, i.e. $\mathbb{N} = \{1, 2, 3, 4, 5, ...\}$ and does not include zero.

- 1. For each of the following, determine whether the statement is TRUE or FALSE. You do not need to provide any justification of your answer.
 - (a) Every infinite subset of \mathbb{R} is uncountable.
 - (b) There is an uncountable subset of $\mathbb{N} \times \mathbb{N}$.
 - (c) There exists a bijection $f: \mathbb{Q} \to \mathbb{R}$.
 - (d) There exists a bijection $f: \mathbb{Q} \to \mathbb{Z}$.
 - (e) If $f : \mathbb{R} \to \mathbb{R}$ is surjective, then f must be bijective.
 - (f) If $f : \mathbb{R} \to \mathbb{R}$ is injective, then f must be surjective.
 - (g) Let A be a finite set. If $f: A \to A$ is surjective, then f must be injective.
 - (h) Let A be a finite set. If $f: A \to A$ is injective, then f must be bijective.
 - (i) Suppose the relation R on \mathbb{Z} is defined by $(a,b) \in R \Leftrightarrow a < b$. R is an equivalence relation on \mathbb{Z} .
 - (j) If a, b, and c are integers, $c \neq 0$, and c|ab, then it must be the case that c|a or c|b.
- 2. Use induction to show that, if x is a real number such that 1 + x > 0, then $(1 + x)^n \ge 1 + nx$ for all $n \in \mathbb{N}$.
- 3. We proved in class that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \text{ for all } n \in \mathbb{N}.$$

Use this fact and induction to prove that $\sum_{i=1}^{n} i^3 = \left(\sum_{i=1}^{n} i\right)^2$ for all $n \in \mathbb{N}$.

- 4. Prove that $6|(n^3-n)$ for every $n \in \mathbb{N}$.
- 5. Prove that $3|(7^n-4)$ for every $n \in \mathbb{N}$.
- 6. Define a relation T on the set \mathbb{R} of real numbers by

$$T = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x - y| < 1\}.$$

Is T an equivalence relation? (Justify your answer, of course.)

7. (a) Define a relation R on \mathbb{N} by

$$(x,y) \in R \Leftrightarrow x-y \text{ is even.}$$

Prove that R is an equivalence relation.

(b) Define a relation R on \mathbb{Z} by

$$(x,y) \in R \Leftrightarrow xy \equiv 0 \pmod{4}.$$

Give a counterexample to demonstrate that R is not transitive.

- 8. Let A, B, and C be sets and consider functions $f:A\to B$ and $g:B\to C$. State whether each of the following is true or false. If the statement is true, prove it; if it is false, give a counterexample.
 - (a) If $g \circ f : A \to C$ is injective, then f must be injective.
 - (b) If $g \circ f : A \to C$ is surjective, then f must be surjective.
- 9. Let $A = \{x \in \mathbb{R} : x \neq 1\}$ and define $f : A \to \mathbb{R}$ by

$$f(x) = \frac{x+1}{x-1}.$$

Is f(x) injective? surjective? Justify each of your responses with a proof or counterexample.

- 10. Define a function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by f(x,y) = (x-y,2x+y). Is f one-to-one? Onto? Justify each of your responses with a proof or counterexample.
- 11. Let $A = \{a \in \mathbb{N} : a \text{ is even}\}\$ and $B = \{b \in \mathbb{N} : b \text{ is odd}\}.$
 - (a) Define a function $f: A \times B \to \mathbb{N}$ by $f(a,b) = \frac{ab}{2}$. Is f surjective? Justify your answer.
 - (b) Define a function $h: A \times B \to \mathbb{N}$ by $h(a,b) = \frac{a+2b}{2}$. Is h surjective? Justify your answer.
 - (c) Define a function $g: B \to \mathbb{N}$ by $g(b) = \frac{b+1}{2}$. Prove that g is bijective.
- 12. Let $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \neq 2\}$ and define $f : S \to S$ by

$$f(x,y) = \left(\frac{y+2}{x-2}, \frac{1}{x-2}\right).$$

- (a) Prove that f is injective.
- (b) Is *f* bijective? Prove it or give a counterexample.
- 13. Suppose $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$. Define $h: \mathbb{R} \to \mathbb{R}$ by h(x) = f(x) + g(x). For each of the following, if the statement is true, prove it; otherwise, give a counterexample to show that the statement is false.
 - (a) If f and g are bijections, then h is a bijection.
 - (b) If f and g are both increasing, then h is increasing. (A function is an increasing function if $x_1 > x_2$ implies $f(x_1) > f(x_2)$.)
 - (c) If f is increasing and g is decreasing, then $g \circ f$ is decreasing.
- 14. Let A be a set, and suppose there exists a function $f: \mathcal{P}(A) \to \mathbb{Z}$ which is a bijection. Prove that A is countable.
- 15. Suppose A and B are sets. Suppose A is finite. Prove that $A \sim B$ if and only if B is finite and |A| = |B|.