MATH 300 C, Winter 2015 Midterm I Study Problems Solutions

1. Prove that, for all $x \in \mathbb{Z}$, if $x^2 - 1$ is divisible by 8, then x is odd.

Proof: Suppose *x* is an even integer.

Then x = 2k for some integer k.

Then $x^2 - 1 = (2k)^2 - 1 = 4k^2 - 1$.

Suppose $x^2 - 1$ is divisible by 8.

Then there exists an integer m such that $4k^2 - 1 = 8m$.

Then $1 = 8m - 4k^2 = 4(2m - k^2)$.

Since $2m - k^2 \in \mathbb{Z}$, 4 divides 1.

However, 4 does not divide 1 since 0 < 1 < 4, so we have a contradiction.

Hence, the assumption that $x^2 - 1$ is divisible by 8 is false.

Thus $x^2 - 1$ is not divisible by 8.

Hence, if $x^2 - 1$ is divisible by 8, then x is odd.

2. Let *a* and *b* be integers. Prove that $x = a^2 + ab + b$ is odd iff *a* is odd or *b* is odd. **Proof:** Suppose *a* and *b* are integers.

We can consider four cases.

- (a) Suppose *a* is even and *b* is even. Then a = 2k and b = 2m for some integers *k* and *m*. Then $x = 4k^2 + 4km + 2m = 2(2k^2 + 2km + m)$. Since $2k^2 + 2km + m$ is an integer (by Closure), *x* is even.
- (b) Suppose *a* is even and *b* is odd.

Then a = 2k and b = 2m + 1 for some integers k and m. Then $x = 4k^2 + 2k(2m + 1) + 2m + 1 = 2(2k^2 + k(2m + 1) + m) + 1$. Since $2k^2 + k(2m + 1) + m$ is an integer (by Closure), x is odd.

(c) Suppose a is odd and b is even.

Then a = 2k + 1 and b = 2m for some integers k and m. Then

$$x = (2k+1)^2 + (2k+1)(2m) + 2m$$

= $4k^2 + 4k + 1 + (2k+1)(2m) + 2m$
= $2(2k^2 + 2k + m(2k+1) + m) + 1.$

Since $2k^2 + 2k + m(2k + 1) + m$ is an integer (by Closure), x is odd. (d) Suppose a is odd and b is odd.

Then a = 2k + 1 and b = 2m + ! for some integers k and m. Then

$$x = (2k+1)^2 + (2m+1)(2k+1) + b$$

= $4k^2 + 4k + 1 + 4mk + 2m + 2k + 1 + 2m + 1$
= $2(2k^2 + 2mk + 3k + 2m + 1) + 1$.

Since $(2k^2 + 2mk + 3k + 2m + 1)$ is an integer (by Closure), x is odd.

The first case shows that if *a* and *b* are even, then *x* is even; hence, if *x* is odd, then *a* is odd or *b* is odd.

The other three cases show that if a or b is odd, then x is odd.

Hence, *x* is odd if and only if *a* is odd or *b* is odd. \blacksquare

3. Let *a* and *b* be integers. Prove that a(b + a + 1) is odd iff *a* and *b* are both odd.

Proof: Let *a* and *b* be integers.

Suppose *a* is even.

Then a = 2k for some $k \in \mathbb{Z}$.

Then a(b + a + 1) = 2k(b + a + 1), and since a, b, and k are integers, k(b + a + 1) is an integer (by Closure).

Hence, $2 \mid a(b+a+1)$, i.e., a(b+a+1) is even.

Suppose a is odd and b is even.

Then a = 2k + 1 and b = 2m for some integers k and m.

Then a(b + a + 1) = a(2k + 2m + 1 + 1) = a(2k + 2m + 2) = 2a(k + m + 1).

Since a, k, and m are integers, a(k + m + 1) is an integer (by Closure), and so $2 \mid a(b + a + 1)$, i.e., a(b + a + 1) is even.

Suppose a is odd and b is odd.

Then a = 2k + 1 and b = 2m + 1 for some integers k and m.

Then

$$a(b+a+1) = (2k+1)(2k+2m+3)$$

= $4k^2 + 4mk + 8k + 2m + 3$
= $2(2k^2 + 4mk + 4k + m + 1) + 1.$

Since k and m are integers, $2k^2 + 4mk + 4k + m + 1$ is an integer (by Closure), and so a(b + a + 1) is odd.

Thus, a(b + a + 1) is odd iff a and b are both odd.

- 4. Prove or give a counterexample for each of the following statements.
 - (a) For all integers a and b, if a|b and b|a, then a = b or a = -b.
 Proof: Let a and b be non-zero integers.
 Suppose a|b and b|a.
 Then there exist integers k and m such that b = ak and a = bm.
 Then, by the Substitution of Equals axiom, we have b = bmk. Hence, b bmk = 0, and so b(1 mk) = 0.
 As b ≠ 0, we may conclude that 1 mk = 0 (by EPI 6).
 That is, mk = 1 (by Substitution of Equals).
 Hence, k = 1 or k = -1 (by EPI 16), so b = a or b = -a. ■

(b) For all integers *m* and *n*, if n + m is odd, then $n \neq m$. **Proof:** Let *m* and *n* be integers. Suppose n = m. Then n + m = 2m which is even. Hence, n = m implies n + m is even, and so if n + m is odd, then $n \neq m$. 5. Let *A*, *B*, and *C* be sets. Prove that $A \cap B = A \setminus (A \setminus B)$. **Proof:** Let *A*, *B*, and *C* be sets. Suppose $x \in A \cap B$. Then $x \in A$ and $x \in B$. Hence, $x \notin A \setminus B$. Since $x \in A$, we conclude $x \in A \setminus (A \setminus B)$. Thus, $x \in A \cap B$ implies $x \in A \setminus (A \setminus B)$, so $A \cap B \subseteq A \setminus (A \setminus B)$. Now, suppose $x \in A \setminus (A \setminus B)$. Then $x \in A$. Suppose $x \notin B$. Then $x \in A \setminus B$, and hence $x \notin A \setminus (A \setminus B)$. This is a contradiction, since $x \in A \setminus (A \setminus B)$. Thus $x \in B$, and so $x \in A \cap B$. Hence, $x \in A \setminus (A \setminus B)$ implies $x \in A \cap B$. Therefore $A \setminus (A \setminus B) \subseteq A \cap B$. Thus, $A \cap B \subseteq A \setminus (A \setminus B)$ and $A \setminus (A \setminus B) \subseteq A \cap B$, and so $A \cap B = A \setminus (A \setminus B)$. 6. Let *A*, *B* and *C* be sets. Prove that $(A \cup B) \setminus (A \cup C) = B \setminus (A \cup C)$. **Proof:** Let *A*, *B* and *C* be sets. Suppose $x \in (A \cup B) \setminus (A \cup C)$. Then $x \in A \cup B$ and $x \notin A \cup C$. Hence, $x \notin A$. Since $x \in A \cup B$, we conclude that $x \in B$. Hence, $x \in B \setminus (A \cup C)$. Thus, $x \in (A \cup B) \setminus (A \cup C)$ implies $x \in B \setminus (A \cup C)$, and so $(A \cup B) \setminus (A \cup C) \subseteq B \setminus (A \cup C)$. Now, suppose $x \in B \setminus (A \cup C)$. Then $x \in B$, so $x \in A \cup B$. Also, $x \notin A \cup C$, and so $x \in (A \cup B) \setminus (A \cup C)$. Hence, $x \in B \setminus (A \cup C)$ implies $x \in (A \cup B) \setminus (A \cup C)$, so $B \setminus (A \cup C) \subseteq x \in (A \cup B) \setminus (A \cup C)$. Thus, $(A \cup B) \setminus (A \cup C) \subseteq B \setminus (A \cup C)$ and $B \setminus (A \cup C) \subseteq x \in (A \cup B) \setminus (A \cup C)$.

Hence, $(A \cup B) \setminus (A \cup C) = B \setminus (A \cup C)$.

7. Let *A*, *B* and *C* be sets. Prove that $(A \setminus B) \setminus C = A \setminus (B \cup C)$. **Proof:** Let *A*, *B* and *C* be sets. Suppose $x \in (A \setminus B) \setminus C$. Then $x \in A$, $x \notin B$ and $x \notin C$. Suppose $x \in B \cup C$. Then $x \in B$ or $x \in C$. This is a contradiction since $x \notin B$ and $x \notin C$. Thus, $x \notin B \cup C$. Hence, $x \in A \setminus (B \cup C)$. So, $x \in (A \setminus B) \setminus C$ implies $x \in A \setminus (B \cup C)$, and hence $(A \setminus B) \setminus C \subseteq x \in A \setminus (B \cup C)$. Now, suppose $x \in A \setminus (B \cup C)$. Then $x \in A$ and $x \notin B \cup C$. Then $x \notin B$ and $x \notin C$, and so $x \in A \setminus B$, and $x \in (A \setminus B) \setminus C$. Thus, $x \in A \setminus (B \cup C)$ implies $x \in (A \setminus B) \setminus C$, and so $A \setminus (B \cup C) \subset (A \setminus B) \setminus C$. Hence, $(A \setminus B) \setminus C \subseteq x \in A \setminus (B \cup C)$ and $A \setminus (B \cup C) \subseteq (A \setminus B) \setminus C$. Therefore, $(A \setminus B) \setminus C = A \setminus (B \cup C)$. 8. Let *A*, *B*, and *C* be sets. Prove that $A \cup C \subseteq B \cup C$ iff $A \setminus C \subseteq B \setminus C$. **Proof:** Let *A*, *B*, and *C* be sets. Suppose $A \cup C \subseteq B \cup C$. Suppose $x \in A \setminus C$. Then $x \in A$ and $x \notin C$. Then $x \in A \cup C$, so $x \in B \cup C$. Since $x \notin C$, we conclude that $x \in B$. Hence, $x \in B$ and $x \notin C$, i.e., $x \in B \setminus C$. Thus, $x \in A \setminus C$ implies $x \in B \setminus C$, so $A \setminus C \subseteq B \setminus C$. Therefore, $A \cup C \subseteq B \cup C$ implies $A \setminus C \subseteq B \setminus C$. Now, suppose $A \setminus C \subseteq B \setminus C$. Suppose $x \in A \cup C$. Then $x \in A$ or $x \in C$. Suppose $x \in C$. Then $x \in B \cup C$. Suppose $x \notin C$. Then $x \in A$, and so $x \in A \setminus C$, and hence $x \in B \setminus C$. So $x \in B$, and hence $x \in B \cup C$. Hence, $x \in B \cup C$, and so $x \in A \cup C$ implies $x \in B \cup C$.

That is, $A \cup C \subseteq B \cup C$.

Thus, $A \setminus C \subseteq B \setminus C$ implies $A \cup C \subseteq B \cup C$.

Thus, $A \cup C \subseteq B \cup C$ iff $A \setminus C \subseteq B \setminus C$.

9. Write out the set (i.e., express the set by listing its elements) given by the expression

 $\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\{2,3,4\}).$

 $\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\{2,3,4\}) = \{\emptyset, \{2\}, \{3\}, \{2,3\}\}.$

10. Let *A* and *B* be sets. Prove that

 $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B).$

Proof: Let *A* and *B* be sets. Suppose $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then $x \in \mathcal{P}(A)$ or $x \in PP(B)$. Suppose $x \in \mathcal{P}(A)$. Then $x \subseteq A$. Suppose $y \in x$. Then $y \in A$, and so $y \in A \cup B$. Thus, $y \in x$ implies $y \in A \cup B$, so $x \subseteq A \cup B$. Hence, $x \in \mathcal{P}(A \cup B)$. Suppose $x \in \mathcal{P}(B)$. Then $x \subseteq B$. Suppose $y \in x$. Then $y \in B$, and so $y \in A \cup B$. Thus, $y \in x$ implies $y \in A \cup B$, so $x \subseteq A \cup B$. Hence, $x \in \mathcal{P}(A \cup B)$. Therefore, $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$ implies $x \in \mathcal{P}(A \cup B)$, so $\mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$. 11. Let *A* and *B* be sets. Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$. **Proof:** Suppose $x \in \mathcal{P}(A \cap B)$. Then $x \subseteq A \cap B$. Suppose $z \in x$. Then $z \in A \cap B$, so $z \in A$ and $z \in B$. Thus, $z \in x$ implies $z \in A$, so $x \subseteq A$, and $z \in x$ implies $z \in B$, so $x \subseteq B$. Hence, $x \in \mathcal{P}(A)$ and $x \in \mathcal{P}(B)$, so $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Thus, $x \in \mathcal{P}(A \cap B)$ implies $x \in PP(A) \cap \mathcal{P}(B)$, so $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$. Now, suppose $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Then $x \in \mathcal{P}(A)$ and $x \in \mathcal{P}(B)$, i.e., $x \subseteq A$ and $x \subseteq B$. Suppose $y \in x$. Then $y \in A$ and $y \in B$, so $y \in A \cap B$. Thus, $y \in x$ implies $y \in A \cap B$, so $x \subseteq A \cap B$, i.e., $x \in \mathcal{P}(A \cap B)$. Hence, $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$ implies $x \in \mathcal{P}(A \cap B)$, and so $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Thus, $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$ and $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$. Therefore, $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$.

12. Let *A* and *B* be sets. Prove that A = B iff $\mathcal{P}(A) = \mathcal{P}(B)$.

Proof:

Let *A* and *B* be sets. Suppose A = B. Then $\mathcal{P}(A) = \mathcal{P}(B)$.

Now, suppose $\mathcal{P}(A) = \mathcal{P}(B)$. Suppose $x \in A$. Then $\{x\} \in \mathcal{P}(A)$, so $\{x\} \in \mathcal{P}(B)$. Hence, $\{x\} \subseteq B$. Since $x \in \{x\}$, $x \in B$. Hence, since $x \in A$ implies $x \in B$, $A \subseteq B$. Now, suppose $y \in B$. Then $\{y\} \in \mathcal{P}(B)$, so $\{y\} \in \mathcal{P}(A)$. Hence, $\{y\} \subseteq A$. Since $y \in \{y\}$, $y \in A$. Hence, since $y \in B$ implies $y \in A$, $B \subseteq A$. Thus A = B. Therefore, A = B iff $\mathcal{P}(A) = \mathcal{P}(B)$.

13. Let *A* and *B* be sets. Prove that $A \cap B = \emptyset$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B) = \{\emptyset\}$. (Bonus: think about proving this with and without using # 11.)

Proof (without using # 11): Let *A* and *B* be sets.

Suppose $A \cap B \neq \emptyset$.

Then there exists x such that $x \in A$ and $x \in B$.

Let $S = \{x\}$, the set containing x as its only element.

Since $x \in A$, $S \subseteq A$, so $S \in \mathcal{P}(A)$.

Since $x \in B$, $S \subseteq B$, so $S \in \mathcal{P}(B)$.

Thus, $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$, and $S \neq \emptyset$, so $\mathcal{P}(A) \cap \mathcal{P}(B) \neq \{\emptyset\}$.

Suppose $\mathcal{P}(A) \cap \mathcal{P}(B) \neq \{\emptyset\}.$

Since $\emptyset \in \mathcal{P}(A) \cap \mathcal{P}(B)$, we can conclude that there is a set $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$ and $S \neq \emptyset$. Hence, there is an element $x \in S$. Since $S \in \mathcal{P}(A)$, $S \subseteq A$, and so $x \in A$. Since $S \in \mathcal{P}(B)$, $S \subseteq B$, and so $x \in B$. Thus, $x \in A \cup B$, so $A \cup B \neq \emptyset$. Hence, $A \cap B = \emptyset$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B) = \{\emptyset\}$.