
MATH 300 C, Winter 2015
Midterm I Study Problems Solutions

1. Prove that, for all x ∈ Z, if x2 − 1 is divisible by 8, then x is odd.

Proof: Suppose x is an even integer.

Then x = 2k for some integer k.

Then x2 − 1 = (2k)2 − 1 = 4k2 − 1.

Suppose x2 − 1 is divisible by 8.

Then there exists an integer m such that 4k2 − 1 = 8m.

Then 1 = 8m− 4k2 = 4(2m− k2).

Since 2m− k2 ∈ Z, 4 divides 1.

However, 4 does not divide 1 since 0 < 1 < 4, so we have a contradiction.

Hence, the assumption that x2 − 1 is divisible by 8 is false.

Thus x2 − 1 is not divisible by 8.

Hence, if x2 − 1 is divisible by 8, then x is odd. �

2. Let a and b be integers. Prove that x = a2 + ab+ b is odd iff a is odd or b is odd.

Proof: Suppose a and b are integers.

We can consider four cases.

(a) Suppose a is even and b is even.
Then a = 2k and b = 2m for some integers k and m.
Then x = 4k2 + 4km+ 2m = 2(2k2 + 2km+m).
Since 2k2 + 2km+m is an integer (by Closure), x is even.

(b) Suppose a is even and b is odd.
Then a = 2k and b = 2m+ 1 for some integers k and m.
Then x = 4k2 + 2k(2m+ 1) + 2m+ 1 = 2(2k2 + k(2m+ 1) +m) + 1.
Since 2k2 + k(2m+ 1) +m is an integer (by Closure), x is odd.

(c) Suppose a is odd and b is even.
Then a = 2k + 1 and b = 2m for some integers k and m.
Then

x = (2k + 1)2 + (2k + 1)(2m) + 2m

= 4k2 + 4k + 1 + (2k + 1)(2m) + 2m

= 2(2k2 + 2k +m(2k + 1) +m) + 1.

Since 2k2 + 2k +m(2k + 1) +m is an integer (by Closure), x is odd.
(d) Suppose a is odd and b is odd.

Then a = 2k + 1 and b = 2m+! for some integers k and m.
Then

x = (2k + 1)2 + (2m+ 1)(2k + 1) + b

= 4k2 + 4k + 1 + 4mk + 2m+ 2k + 1 + 2m+ 1

= 2(2k2 + 2mk + 3k + 2m+ 1) + 1.

Since (2k2 + 2mk + 3k + 2m+ 1) is an integer (by Closure), x is odd.



The first case shows that if a and b are even, then x is even; hence, if x is odd, then a is odd or b is
odd.

The other three cases show that if a or b is odd, then x is odd.

Hence, x is odd if and only if a is odd or b is odd. �

3. Let a and b be integers. Prove that a(b+ a+ 1) is odd iff a and b are both odd.

Proof: Let a and b be integers.

Suppose a is even.

Then a = 2k for some k ∈ Z.

Then a(b + a + 1) = 2k(b + a + 1), and since a, b, and k are integers, k(b + a + 1) is an integer (by
Closure).

Hence, 2 | a(b+ a+ 1), i.e., a(b+ a+ 1) is even.

Suppose a is odd and b is even.

Then a = 2k + 1 and b = 2m for some integers k and m.

Then a(b+ a+ 1) = a(2k + 2m+ 1 + 1) = a(2k + 2m+ 2) = 2a(k +m+ 1).

Since a, k, and m are integers, a(k +m + 1) is an integer (by Closure), and so 2 | a(b + a + 1), i.e.,
a(b+ a+ 1) is even.

Suppose a is odd and b is odd.

Then a = 2k + 1 and b = 2m+ 1 for some integers k and m.

Then

a(b+ a+ 1) = (2k + 1)(2k + 2m+ 3)

= 4k2 + 4mk + 8k + 2m+ 3

= 2(2k2 + 4mk + 4k +m+ 1) + 1.

Since k and m are integers, 2k2 + 4mk + 4k +m+ 1 is an integer (by Closure), and so a(b+ a+ 1)
is odd.

Thus, a(b+ a+ 1) is odd iff a and b are both odd.�

4. Prove or give a counterexample for each of the following statements.

(a) For all integers a and b, if a|b and b|a, then a = b or a = −b.
Proof: Let a and b be non-zero integers.
Suppose a|b and b|a.
Then there exist integers k and m such that b = ak and a = bm.
Then, by the Substitution of Equals axiom, we have b = bmk. Hence, b − bmk = 0, and so
b(1−mk) = 0.
As b 6= 0, we may conclude that 1−mk = 0 (by EPI 6).
That is, mk = 1 (by Substitution of Equals).
Hence, k = 1 or k = −1 (by EPI 16), so b = a or b = −a. �



(b) For all integers m and n, if n+m is odd, then n 6= m.
Proof: Let m and n be integers.
Suppose n = m. Then n+m = 2m which is even.
Hence, n = m implies n+m is even, and so if n+m is odd, then n 6= m. �

5. Let A, B, and C be sets. Prove that A ∩B = A \ (A \B).

Proof: Let A, B, and C be sets.

Suppose x ∈ A ∩B.

Then x ∈ A and x ∈ B.

Hence, x 6∈ A \B.

Since x ∈ A, we conclude x ∈ A \ (A \B).

Thus, x ∈ A ∩B implies x ∈ A \ (A \B), so A ∩B ⊆ A \ (A \B).

Now, suppose x ∈ A \ (A \B).

Then x ∈ A.

Suppose x 6∈ B.

Then x ∈ A \B, and hence x 6∈ A \ (A \B).

This is a contradiction, since x ∈ A \ (A \B).

Thus x ∈ B, and so x ∈ A ∩B.

Hence, x ∈ A \ (A \B) implies x ∈ A ∩B.

Therefore A \ (A \B) ⊆ A ∩B.

Thus, A ∩B ⊆ A \ (A \B) and A \ (A \B) ⊆ A ∩B, and so A ∩B = A \ (A \B). �

6. Let A, B and C be sets. Prove that (A ∪B) \ (A ∪ C) = B \ (A ∪ C).

Proof: Let A, B and C be sets.

Suppose x ∈ (A ∪B) \ (A ∪ C).

Then x ∈ A ∪B and x 6∈ A ∪ C.

Hence, x 6∈ A.

Since x ∈ A ∪B, we conclude that x ∈ B.

Hence, x ∈ B \ (A ∪ C).

Thus, x ∈ (A ∪B) \ (A ∪ C) implies x ∈ B \ (A ∪ C), and so (A ∪B) \ (A ∪ C) ⊆ B \ (A ∪ C).

Now, suppose x ∈ B \ (A ∪ C).

Then x ∈ B, so x ∈ A ∪B.

Also, x 6∈ A ∪ C, and so x ∈ (A ∪B) \ (A ∪ C).

Hence, x ∈ B \ (A ∪ C) implies x ∈ (A ∪B) \ (A ∪ C), so B \ (A ∪ C) ⊆ x ∈ (A ∪B) \ (A ∪ C).

Thus, (A ∪B) \ (A ∪ C) ⊆ B \ (A ∪ C) and B \ (A ∪ C) ⊆ x ∈ (A ∪B) \ (A ∪ C).

Hence, (A ∪B) \ (A ∪ C) = B \ (A ∪ C). �



7. Let A, B and C be sets. Prove that (A \B) \ C = A \ (B ∪ C).

Proof: Let A, B and C be sets.

Suppose x ∈ (A \B) \ C.

Then x ∈ A, x 6∈ B and x 6∈ C.

Suppose x ∈ B ∪ C.

Then x ∈ B or x ∈ C.

This is a contradiction since x 6∈ B and x 6∈ C.

Thus, x 6∈ B ∪ C.

Hence, x ∈ A \ (B ∪ C).

So, x ∈ (A \B) \ C implies x ∈ A \ (B ∪ C), and hence (A \B) \ C ⊆ x ∈ A \ (B ∪ C).

Now, suppose x ∈ A \ (B ∪ C).

Then x ∈ A and x 6∈ B ∪ C.

Then x 6∈ B and x 6∈ C, and so x ∈ A \B, and x ∈ (A \B) \ C.

Thus, x ∈ A \ (B ∪ C) implies x ∈ (A \B) \ C, and so A \ (B ∪ C) ⊆ (A \B) \ C.

Hence, (A \B) \ C ⊆ x ∈ A \ (B ∪ C) and A \ (B ∪ C) ⊆ (A \B) \ C.

Therefore, (A \B) \ C = A \ (B ∪ C). �

8. Let A, B, and C be sets. Prove that A ∪ C ⊆ B ∪ C iff A \ C ⊆ B \ C.

Proof: Let A, B, and C be sets.

Suppose A ∪ C ⊆ B ∪ C.

Suppose x ∈ A \ C.

Then x ∈ A and x 6∈ C.

Then x ∈ A ∪ C, so x ∈ B ∪ C.

Since x 6∈ C, we conclude that x ∈ B.

Hence, x ∈ B and x 6∈ C, i.e., x ∈ B \ C.

Thus, x ∈ A \ C implies x ∈ B \ C, so A \ C ⊆ B \ C.

Therefore, A ∪ C ⊆ B ∪ C implies A \ C ⊆ B \ C.

Now, suppose A \ C ⊆ B \ C.

Suppose x ∈ A ∪ C.

Then x ∈ A or x ∈ C.

Suppose x ∈ C.

Then x ∈ B ∪ C.

Suppose x 6∈ C.

Then x ∈ A, and so x ∈ A \ C, and hence x ∈ B \ C.

So x ∈ B, and hence x ∈ B ∪ C.

Hence, x ∈ B ∪ C, and so x ∈ A ∪ C implies x ∈ B ∪ C.



That is, A ∪ C ⊆ B ∪ C.

Thus, A \ C ⊆ B \ C implies A ∪ C ⊆ B ∪ C.

Thus, A ∪ C ⊆ B ∪ C iff A \ C ⊆ B \ C. �

9. Write out the set (i.e., express the set by listing its elements) given by the expression

P({1, 2, 3}) ∩ P({2, 3, 4}).

P({1, 2, 3}) ∩ P({2, 3, 4}) = {∅, {2}, {3}, {2, 3}}.

10. Let A and B be sets. Prove that

P(A) ∪ P(B) ⊆ P(A ∪B).

Proof: Let A and B be sets.

Suppose x ∈ P(A) ∪ P(B).

Then x ∈ P(A) or x ∈ PP (B).

Suppose x ∈ P(A).
Then x ⊆ A.

Suppose y ∈ x.

Then y ∈ A, and so y ∈ A ∪B.

Thus, y ∈ x implies y ∈ A ∪B, so x ⊆ A ∪B.

Hence, x ∈ P(A ∪B).

Suppose x ∈ P(B).

Then x ⊆ B.

Suppose y ∈ x.

Then y ∈ B, and so y ∈ A ∪B.

Thus, y ∈ x implies y ∈ A ∪B, so x ⊆ A ∪B.

Hence, x ∈ P(A ∪B).

Therefore, x ∈ P(A) ∪ P(B) implies x ∈ P(A ∪B), so P(B) ⊆ P(A ∪B). �

11. Let A and B be sets. Prove that P(A ∩B) = P(A) ∩ P(B).

Proof: Suppose x ∈ P(A ∩B).

Then x ⊆ A ∩B.

Suppose z ∈ x.

Then z ∈ A ∩B, so z ∈ A and z ∈ B.

Thus, z ∈ x implies z ∈ A, so x ⊆ A, and z ∈ x implies z ∈ B, so x ⊆ B.

Hence, x ∈ P(A) and x ∈ P(B), so x ∈ P(A) ∩ P(B).

Thus, x ∈ P(A ∩B) implies x ∈ PP (A) ∩ P(B), so P(A ∩B) ⊆ P(A) ∩ P(B).



Now, suppose x ∈ P(A) ∩ P(B).

Then x ∈ P(A) and x ∈ P(B), i.e., x ⊆ A and x ⊆ B.

Suppose y ∈ x.

Then y ∈ A and y ∈ B, so y ∈ A ∩B.

Thus, y ∈ x implies y ∈ A ∩B, so x ⊆ A ∩B, i.e., x ∈ P(A ∩B).

Hence, x ∈ P(A) ∩ P(B) implies x ∈ P(A ∩B), and so P(A) ∩ P(B) ⊆ P(A ∩B).

Thus, P(A) ∩ P(B) ⊆ P(A ∩B) and P(A ∩B) ⊆ P(A) ∩ P(B).

Therefore, P(A) ∩ P(B) = P(A ∩B). �

12. Let A and B be sets. Prove that A = B iff P(A) = P(B).

Proof:

Let A and B be sets.

Suppose A = B. Then P(A) = P(B).

Now, suppose P(A) = P(B).

Suppose x ∈ A.

Then {x} ∈ P(A), so {x} ∈ P(B).

Hence, {x} ⊆ B.

Since x ∈ {x}, x ∈ B.

Hence, since x ∈ A implies x ∈ B, A ⊆ B.

Now, suppose y ∈ B.

Then {y} ∈ P(B), so {y} ∈ P(A).
Hence, {y} ⊆ A.

Since y ∈ {y}, y ∈ A.

Hence, since y ∈ B implies y ∈ A, B ⊆ A.

Thus A = B.

Therefore, A = B iff P(A) = P(B). �

13. Let A and B be sets. Prove that A∩B = ∅ if and only if P(A)∩P(B) = {∅}. (Bonus: think about
proving this with and without using # 11.)

Proof (without using # 11): Let A and B be sets.

Suppose A ∩B 6= ∅.

Then there exists x such that x ∈ A and x ∈ B.

Let S = {x}, the set containing x as its only element.

Since x ∈ A, S ⊆ A, so S ∈ P(A).
Since x ∈ B, S ⊆ B, so S ∈ P(B).

Thus, S ∈ P(A) ∩ P(B), and S 6= ∅, so P(A) ∩ P(B) 6= {∅}.

Suppose P(A) ∩ P(B) 6= {∅}.



Since ∅ ∈ P(A) ∩ P(B), we can conclude that there is a set S ∈ P(A) ∩ P(B) and S 6= ∅.

Hence, there is an element x ∈ S.

Since S ∈ P(A), S ⊆ A, and so x ∈ A.

Since S ∈ P(B), S ⊆ B, and so x ∈ B.

Thus, x ∈ A ∪B, so A ∪B 6= ∅.

Hence, A ∩B = ∅ if and only if P(A) ∩ P(B) = {∅}.�


