MATH 300 C, Winter 2015
Midterm I Study Problems Solutions

1. Prove that, for all $x \in \mathbb{Z}$, if $x^{2}-1$ is divisible by 8 , then x is odd.

Proof: Suppose x is an even integer.
Then $x=2 k$ for some integer k.
Then $x^{2}-1=(2 k)^{2}-1=4 k^{2}-1$.
Suppose $x^{2}-1$ is divisible by 8 .
Then there exists an integer m such that $4 k^{2}-1=8 m$.
Then $1=8 m-4 k^{2}=4\left(2 m-k^{2}\right)$.
Since $2 m-k^{2} \in \mathbb{Z}, 4$ divides 1 .
However, 4 does not divide 1 since $0<1<4$, so we have a contradiction.
Hence, the assumption that $x^{2}-1$ is divisible by 8 is false.
Thus $x^{2}-1$ is not divisible by 8 .
Hence, if $x^{2}-1$ is divisible by 8 , then x is odd.
2. Let a and b be integers. Prove that $x=a^{2}+a b+b$ is odd iff a is odd or b is odd.

Proof: Suppose a and b are integers.
We can consider four cases.
(a) Suppose a is even and b is even.

Then $a=2 k$ and $b=2 m$ for some integers k and m.
Then $x=4 k^{2}+4 k m+2 m=2\left(2 k^{2}+2 k m+m\right)$.
Since $2 k^{2}+2 k m+m$ is an integer (by Closure), x is even.
(b) Suppose a is even and b is odd.

Then $a=2 k$ and $b=2 m+1$ for some integers k and m.
Then $x=4 k^{2}+2 k(2 m+1)+2 m+1=2\left(2 k^{2}+k(2 m+1)+m\right)+1$.
Since $2 k^{2}+k(2 m+1)+m$ is an integer (by Closure), x is odd.
(c) Suppose a is odd and b is even.

Then $a=2 k+1$ and $b=2 m$ for some integers k and m.
Then

$$
\begin{aligned}
x & =(2 k+1)^{2}+(2 k+1)(2 m)+2 m \\
& =4 k^{2}+4 k+1+(2 k+1)(2 m)+2 m \\
& =2\left(2 k^{2}+2 k+m(2 k+1)+m\right)+1 .
\end{aligned}
$$

Since $2 k^{2}+2 k+m(2 k+1)+m$ is an integer (by Closure), x is odd.
(d) Suppose a is odd and b is odd.

Then $a=2 k+1$ and $b=2 m+!$ for some integers k and m.
Then

$$
\begin{aligned}
x & =(2 k+1)^{2}+(2 m+1)(2 k+1)+b \\
& =4 k^{2}+4 k+1+4 m k+2 m+2 k+1+2 m+1 \\
& =2\left(2 k^{2}+2 m k+3 k+2 m+1\right)+1 .
\end{aligned}
$$

Since $\left(2 k^{2}+2 m k+3 k+2 m+1\right)$ is an integer (by Closure), x is odd.

The first case shows that if a and b are even, then x is even; hence, if x is odd, then a is odd or b is odd.

The other three cases show that if a or b is odd, then x is odd.
Hence, x is odd if and only if a is odd or b is odd.
3. Let a and b be integers. Prove that $a(b+a+1)$ is odd iff a and b are both odd.

Proof: Let a and b be integers.
Suppose a is even.
Then $a=2 k$ for some $k \in \mathbb{Z}$.
Then $a(b+a+1)=2 k(b+a+1)$, and since a, b, and k are integers, $k(b+a+1)$ is an integer (by Closure).
Hence, $2 \mid a(b+a+1)$, i.e., $a(b+a+1)$ is even.
Suppose a is odd and b is even.
Then $a=2 k+1$ and $b=2 m$ for some integers k and m.
Then $a(b+a+1)=a(2 k+2 m+1+1)=a(2 k+2 m+2)=2 a(k+m+1)$.
Since a, k, and m are integers, $a(k+m+1$) is an integer (by Closure), and so $2 \mid a(b+a+1)$, i.e., $a(b+a+1)$ is even.

Suppose a is odd and b is odd.
Then $a=2 k+1$ and $b=2 m+1$ for some integers k and m.
Then

$$
\begin{aligned}
a(b+a+1) & =(2 k+1)(2 k+2 m+3) \\
& =4 k^{2}+4 m k+8 k+2 m+3 \\
& =2\left(2 k^{2}+4 m k+4 k+m+1\right)+1 .
\end{aligned}
$$

Since k and m are integers, $2 k^{2}+4 m k+4 k+m+1$ is an integer (by Closure), and so $a(b+a+1)$ is odd.

Thus, $a(b+a+1)$ is odd iff a and b are both odd.
4. Prove or give a counterexample for each of the following statements.
(a) For all integers a and b, if $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.

Proof: Let a and b be non-zero integers.
Suppose $a \mid b$ and $b \mid a$.
Then there exist integers k and m such that $b=a k$ and $a=b m$.
Then, by the Substitution of Equals axiom, we have $b=b m k$. Hence, $b-b m k=0$, and so $b(1-m k)=0$.
As $b \neq 0$, we may conclude that $1-m k=0$ (by EPI 6).
That is, $m k=1$ (by Substitution of Equals).
Hence, $k=1$ or $k=-1$ (by EPI 16), so $b=a$ or $b=-a$.
(b) For all integers m and n, if $n+m$ is odd, then $n \neq m$.

Proof: Let m and n be integers.
Suppose $n=m$. Then $n+m=2 m$ which is even.
Hence, $n=m$ implies $n+m$ is even, and so if $n+m$ is odd, then $n \neq m$.
5. Let A, B, and C be sets. Prove that $A \cap B=A \backslash(A \backslash B)$.

Proof: Let A, B, and C be sets.
Suppose $x \in A \cap B$.
Then $x \in A$ and $x \in B$.
Hence, $x \notin A \backslash B$.
Since $x \in A$, we conclude $x \in A \backslash(A \backslash B)$.
Thus, $x \in A \cap B$ implies $x \in A \backslash(A \backslash B)$, so $A \cap B \subseteq A \backslash(A \backslash B)$.
Now, suppose $x \in A \backslash(A \backslash B)$.
Then $x \in A$.
Suppose $x \notin B$.
Then $x \in A \backslash B$, and hence $x \notin A \backslash(A \backslash B)$.
This is a contradiction, since $x \in A \backslash(A \backslash B)$.
Thus $x \in B$, and so $x \in A \cap B$.
Hence, $x \in A \backslash(A \backslash B)$ implies $x \in A \cap B$.
Therefore $A \backslash(A \backslash B) \subseteq A \cap B$.
Thus, $A \cap B \subseteq A \backslash(A \backslash B)$ and $A \backslash(A \backslash B) \subseteq A \cap B$, and so $A \cap B=A \backslash(A \backslash B)$.
6. Let A, B and C be sets. Prove that $(A \cup B) \backslash(A \cup C)=B \backslash(A \cup C)$.

Proof: Let A, B and C be sets.
Suppose $x \in(A \cup B) \backslash(A \cup C)$.
Then $x \in A \cup B$ and $x \notin A \cup C$.
Hence, $x \notin A$.
Since $x \in A \cup B$, we conclude that $x \in B$.
Hence, $x \in B \backslash(A \cup C)$.
Thus, $x \in(A \cup B) \backslash(A \cup C)$ implies $x \in B \backslash(A \cup C)$, and so $(A \cup B) \backslash(A \cup C) \subseteq B \backslash(A \cup C)$.
Now, suppose $x \in B \backslash(A \cup C)$.
Then $x \in B$, so $x \in A \cup B$.
Also, $x \notin A \cup C$, and so $x \in(A \cup B) \backslash(A \cup C)$.
Hence, $x \in B \backslash(A \cup C)$ implies $x \in(A \cup B) \backslash(A \cup C)$, so $B \backslash(A \cup C) \subseteq x \in(A \cup B) \backslash(A \cup C)$.

Thus, $(A \cup B) \backslash(A \cup C) \subseteq B \backslash(A \cup C)$ and $B \backslash(A \cup C) \subseteq x \in(A \cup B) \backslash(A \cup C)$.
Hence, $(A \cup B) \backslash(A \cup C)=B \backslash(A \cup C)$.
7. Let A, B and C be sets. Prove that $(A \backslash B) \backslash C=A \backslash(B \cup C)$.

Proof: Let A, B and C be sets.
Suppose $x \in(A \backslash B) \backslash C$.
Then $x \in A, x \notin B$ and $x \notin C$.
Suppose $x \in B \cup C$.
Then $x \in B$ or $x \in C$.
This is a contradiction since $x \notin B$ and $x \notin C$.
Thus, $x \notin B \cup C$.
Hence, $x \in A \backslash(B \cup C)$.
So, $x \in(A \backslash B) \backslash C$ implies $x \in A \backslash(B \cup C)$, and hence $(A \backslash B) \backslash C \subseteq x \in A \backslash(B \cup C)$.

Now, suppose $x \in A \backslash(B \cup C)$.
Then $x \in A$ and $x \notin B \cup C$.
Then $x \notin B$ and $x \notin C$, and so $x \in A \backslash B$, and $x \in(A \backslash B) \backslash C$.
Thus, $x \in A \backslash(B \cup C)$ implies $x \in(A \backslash B) \backslash C$, and so $A \backslash(B \cup C) \subseteq(A \backslash B) \backslash C$.
Hence, $(A \backslash B) \backslash C \subseteq x \in A \backslash(B \cup C)$ and $A \backslash(B \cup C) \subseteq(A \backslash B) \backslash C$.
Therefore, $(A \backslash B) \backslash C=A \backslash(B \cup C)$.
8. Let A, B, and C be sets. Prove that $A \cup C \subseteq B \cup C$ iff $A \backslash C \subseteq B \backslash C$.

Proof: Let A, B, and C be sets.
Suppose $A \cup C \subseteq B \cup C$.
Suppose $x \in A \backslash C$.
Then $x \in A$ and $x \notin C$.
Then $x \in A \cup C$, so $x \in B \cup C$.
Since $x \notin C$, we conclude that $x \in B$.
Hence, $x \in B$ and $x \notin C$, i.e., $x \in B \backslash C$.
Thus, $x \in A \backslash C$ implies $x \in B \backslash C$, so $A \backslash C \subseteq B \backslash C$.
Therefore, $A \cup C \subseteq B \cup C$ implies $A \backslash C \subseteq B \backslash C$.
Now, suppose $A \backslash C \subseteq B \backslash C$.
Suppose $x \in A \cup C$.
Then $x \in A$ or $x \in C$.
Suppose $x \in C$.
Then $x \in B \cup C$.
Suppose $x \notin C$.
Then $x \in A$, and so $x \in A \backslash C$, and hence $x \in B \backslash C$.
So $x \in B$, and hence $x \in B \cup C$.
Hence, $x \in B \cup C$, and so $x \in A \cup C$ implies $x \in B \cup C$.

That is, $A \cup C \subseteq B \cup C$.
Thus, $A \backslash C \subseteq B \backslash C$ implies $A \cup C \subseteq B \cup C$.
Thus, $A \cup C \subseteq B \cup C$ iff $A \backslash C \subseteq B \backslash C$.
9. Write out the set (i.e., express the set by listing its elements) given by the expression

$$
\begin{gathered}
\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\{2,3,4\}) \\
\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\{2,3,4\})=\{\varnothing,\{2\},\{3\},\{2,3\}\} .
\end{gathered}
$$

10. Let A and B be sets. Prove that

$$
\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)
$$

Proof: Let A and B be sets.
Suppose $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$.
Then $x \in \mathcal{P}(A)$ or $x \in P P(B)$.
Suppose $x \in \mathcal{P}(A)$.
Then $x \subseteq A$.
Suppose $y \in x$.
Then $y \in A$, and so $y \in A \cup B$.
Thus, $y \in x$ implies $y \in A \cup B$, so $x \subseteq A \cup B$.
Hence, $x \in \mathcal{P}(A \cup B)$.

Suppose $x \in \mathcal{P}(B)$.
Then $x \subseteq B$.
Suppose $y \in x$.
Then $y \in B$, and so $y \in A \cup B$.
Thus, $y \in x$ implies $y \in A \cup B$, so $x \subseteq A \cup B$.
Hence, $x \in \mathcal{P}(A \cup B)$.
Therefore, $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$ implies $x \in \mathcal{P}(A \cup B)$, so $\mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
11. Let A and B be sets. Prove that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.

Proof: Suppose $x \in \mathcal{P}(A \cap B)$.
Then $x \subseteq A \cap B$.
Suppose $z \in x$.
Then $z \in A \cap B$, so $z \in A$ and $z \in B$.
Thus, $z \in x$ implies $z \in A$, so $x \subseteq A$, and $z \in x$ implies $z \in B$, so $x \subseteq B$.
Hence, $x \in \mathcal{P}(A)$ and $x \in \mathcal{P}(B)$, so $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
Thus, $x \in \mathcal{P}(A \cap B)$ implies $x \in P P(A) \cap \mathcal{P}(B)$, so $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.

Now, suppose $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
Then $x \in \mathcal{P}(A)$ and $x \in \mathcal{P}(B)$, i.e., $x \subseteq A$ and $x \subseteq B$.
Suppose $y \in x$.
Then $y \in A$ and $y \in B$, so $y \in A \cap B$.
Thus, $y \in x$ implies $y \in A \cap B$, so $x \subseteq A \cap B$, i.e., $x \in \mathcal{P}(A \cap B)$.
Hence, $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$ implies $x \in \mathcal{P}(A \cap B)$, and so $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.
Thus, $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$ and $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.
Therefore, $\mathcal{P}(A) \cap \mathcal{P}(B)=\mathcal{P}(A \cap B)$.
12. Let A and B be sets. Prove that $A=B$ iff $\mathcal{P}(A)=\mathcal{P}(B)$.

Proof:

Let A and B be sets.
Suppose $A=B$. Then $\mathcal{P}(A)=\mathcal{P}(B)$.
Now, suppose $\mathcal{P}(A)=\mathcal{P}(B)$.
Suppose $x \in A$.
Then $\{x\} \in \mathcal{P}(A)$, so $\{x\} \in \mathcal{P}(B)$.
Hence, $\{x\} \subseteq B$.
Since $x \in\{x\}, x \in B$.
Hence, since $x \in A$ implies $x \in B, A \subseteq B$.
Now, suppose $y \in B$.
Then $\{y\} \in \mathcal{P}(B)$, so $\{y\} \in \mathcal{P}(A)$.
Hence, $\{y\} \subseteq A$.
Since $y \in\{y\}, y \in A$.
Hence, since $y \in B$ implies $y \in A, B \subseteq A$.
Thus $A=B$.
Therefore, $A=B$ iff $\mathcal{P}(A)=\mathcal{P}(B)$.
13. Let A and B be sets. Prove that $A \cap B=\varnothing$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B)=\{\varnothing\}$. (Bonus: think about proving this with and without using \# 11.)
Proof (without using \# 11): Let A and B be sets.
Suppose $A \cap B \neq \varnothing$.
Then there exists x such that $x \in A$ and $x \in B$.
Let $S=\{x\}$, the set containing x as its only element.
Since $x \in A, S \subseteq A$, so $S \in \mathcal{P}(A)$.
Since $x \in B, S \subseteq B$, so $S \in \mathcal{P}(B)$.
Thus, $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$, and $S \neq \varnothing$, so $\mathcal{P}(A) \cap \mathcal{P}(B) \neq\{\varnothing\}$.
Suppose $\mathcal{P}(A) \cap \mathcal{P}(B) \neq\{\varnothing\}$.

Since $\varnothing \in \mathcal{P}(A) \cap \mathcal{P}(B)$, we can conclude that there is a set $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$ and $S \neq \varnothing$. Hence, there is an element $x \in S$.
Since $S \in \mathcal{P}(A), S \subseteq A$, and so $x \in A$.
Since $S \in \mathcal{P}(B), S \subseteq B$, and so $x \in B$.
Thus, $x \in A \cup B$, so $A \cup B \neq \varnothing$.
Hence, $A \cap B=\varnothing$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B)=\{\varnothing\}$.

