MATH 300 C, Winter 2015 Midterm I Study Problems

- 1. Prove that, for all $x \in \mathbb{Z}$, if $x^2 1$ is divisible by 8, then x is odd.
- 2. Let *a* and *b* be integers. Prove that $x = a^2 + ab + b$ is odd iff *a* is odd or *b* is odd.
- 3. Let *a* and *b* be integers. Prove that a(b + a + 1) is odd iff *a* and *b* are both odd.
- 4. Prove or give a counterexample for each of the following statements.
 - (a) For all integers a and b, if a|b and b|a, then a = b or a = -b.
 - (b) For all integers m and n, if n + m is odd, then $n \neq m$.
- 5. Let *A*, *B*, and *C* be sets. Prove that $A \cap B = A \setminus (A \setminus B)$.
- 6. Let *A*, *B* and *C* be sets. Prove that $(A \cup B) \setminus (A \cup C) = B \setminus (A \cup C)$.
- 7. Let *A*, *B* and *C* be sets. Prove that $(A \setminus B) \setminus C = A \setminus (B \cup C)$.
- 8. Let *A*, *B*, and *C* be sets. Prove that $A \cup C \subseteq B \cup C$ iff $A \setminus C \subseteq B \setminus C$.
- 9. Write out the set (i.e., express the set by listing its elements) given by the expression

$$\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\{2,3,4\}).$$

10. Let *A* and *B* be sets. Prove that

$$\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B).$$

- 11. Let *A* and *B* be sets. Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.
- 12. Let *A* and *B* be sets. Prove that A = B iff $\mathcal{P}(A) = \mathcal{P}(B)$.
- 13. Let *A* and *B* be sets. Prove that $A \cap B = \emptyset$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B) = \{\emptyset\}$. (Bonus: think about proving this with and without using # 11.)