MATH 300 C, Winter 2015
Midterm I Study Problems

1. Prove that, for all $x \in \mathbb{Z}$, if $x^{2}-1$ is divisible by 8 , then x is odd.
2. Let a and b be integers. Prove that $x=a^{2}+a b+b$ is odd iff a is odd or b is odd.
3. Let a and b be integers. Prove that $a(b+a+1)$ is odd iff a and b are both odd.
4. Prove or give a counterexample for each of the following statements.
(a) For all integers a and b, if $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.
(b) For all integers m and n, if $n+m$ is odd, then $n \neq m$.
5. Let A, B, and C be sets. Prove that $A \cap B=A \backslash(A \backslash B)$.
6. Let A, B and C be sets. Prove that $(A \cup B) \backslash(A \cup C)=B \backslash(A \cup C)$.
7. Let A, B and C be sets. Prove that $(A \backslash B) \backslash C=A \backslash(B \cup C)$.
8. Let A, B, and C be sets. Prove that $A \cup C \subseteq B \cup C$ iff $A \backslash C \subseteq B \backslash C$.
9. Write out the set (i.e., express the set by listing its elements) given by the expression

$$
\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\{2,3,4\})
$$

10. Let A and B be sets. Prove that

$$
\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)
$$

11. Let A and B be sets. Prove that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
12. Let A and B be sets. Prove that $A=B$ iff $\mathcal{P}(A)=\mathcal{P}(B)$.
13. Let A and B be sets. Prove that $A \cap B=\varnothing$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B)=\{\varnothing\}$. (Bonus: think about proving this with and without using \# 11.)
