Homework 6 - Math 300 C - Spring 2015 - Dr. Matthew Conroy

1. Let a and b be integers. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by $f(x)=a x+b$. Determine the conditions on a and b necessary and sufficient for f to be a bijection, and then use those conditions to complete, and then prove, the following statement: " f is a bijection iff
\qquad ".
2. Let $A=\{0,1,2,3,4\}$. Define $f: A \rightarrow A$ by $f(x)=2 x+3$ using modulo 5 arithmetic (so, $f(1)=0, f(2)=2$, etc.). Define $g: A \rightarrow A$ by $g(x)=3 x+1$ using modulo 5 arithmetic. Prove that $g=f^{-1}$.
3. Let $A=\{0,1,2,3,4\}$. Define $f: A \rightarrow A$ by $f(x)=4 x+1$ using modulo 5 arithmetic. State and prove a theorem about f^{-1}.
4. Let $f: A \rightarrow B$ and $g: B \rightarrow A$. Suppose $g \circ f=i_{A}$. Then f is one-to-one and g is onto.
5. Define $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$
f(x)= \begin{cases}x+3 & \text { if } x \text { is even } \\ 7-x & \text { if } x \text { is odd. }\end{cases}
$$

Prove that f is a bijection and give f^{-1}.
6. Let A and B be sets, and $f: A \rightarrow B$. Suppose f is one-to-one. Prove that there exists a subset $C \subseteq B$ such that $f^{-1}: C \rightarrow A$.

