Homework 5 - Math 300 C - Spring 2015 - Dr. Matthew Conroy

1. Prove that there are infinitely many positive integers that are not the sum of two cubes (hint: look at the situation modulo 7).
2. Prove that $20 \mid 3^{5427}-7$.
3. Prove that $35 \mid 14^{7800}-21$.
4. Suppose $f: A \rightarrow C$ and $g: B \rightarrow C$. Prove that if $A \cap B=\varnothing$, then $f \cup g:(A \cup B) \rightarrow C$.
5. Suppose R is a relation on a set A . Is it possible that R is both a function (i.e., $R: A \rightarrow A$) and an equivalence relation? Answer this question as specifically as possible by completing and proving the statement " R is a function and an equivalence relation iff ...".
6. Let S and T be sets and $f: S \rightarrow T$. Define a relation R on S by

$$
(a, b) \in R \Leftrightarrow f(a)=f(b) .
$$

Prove that R is an equivalence relation.
7. Let A, B and C be sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that if f and g are onto, then $g \circ f$ is onto.
(b) Prove that if $g \circ f$ is onto, then g is onto.
(c) If $g \circ f$ is onto, is f necessarily onto? Prove your answer.
8. Let A be the set of subsets of \mathbb{R}. Define a function $f: \mathbb{R} \rightarrow A$ by

$$
f(x)=\{z \in \mathbb{R}:|z|>x\}
$$

Is f one-to-one? Is f onto?
9. Suppose A, B and C are sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that if f is onto and g is not one-to-one, then $g \circ f$ is not one-to-one.
(b) Prove that if f is not onto and g is one-to-one, then $g \circ f$ is not onto.

